Before you begin

VMware vSphere cloud provider prerequisites


Enabling VMware vSphere requires installing the VMware Tools on each Node VM. See Installing VMware tools for more information.

  1. Create a VM folder and move OKD Node VMs to this folder.

  2. Verify that the Node VM names complies with the regex [a-z](([-0-9a-z]+)?[0-9a-z])?(\.[a-z0-9](([-0-9a-z]+)?[0-9a-z])?)*.

    VM Names cannot:

    • Begin with numbers.

    • Have any capital letters.

    • Have any special characters except -.

    • Be shorter than three characters and longer than 63 characters.

  3. Set the disk.EnableUUID parameter to true for each Node VM. This ensures that the VMware vSphere’s Virtual Machine Disk (VMDK) always presents a consistent UUID to the VM, allowing the disk to be mounted properly.

    For every vSphere virtual machine node that will be participating in the cluster, follow the steps below using the vSphere console:

  4. Navigate to VM propertiesVM OptionsAdvancedConfiguration Parametersdisk.enableUUID=TRUE

    1. Set up the GOVC environment:

      curl -LO
      gunzip govc_linux_amd64.gz
      chmod +x govc_linux_amd64
      cp govc_linux_amd64 /usr/bin/govc
      export GOVC_URL='vCenter IP OR FQDN'
      export GOVC_USERNAME='vCenter User'
      export GOVC_PASSWORD='vCenter Password'
      export GOVC_INSECURE=1
    2. Find the Node VM paths:

      govc ls /datacenter/vm/<vm-folder-name>
    3. Set disk.EnableUUID to true for all VMs:

      govc vm.change -e="disk.enableUUID=1" -vm='VM Path'

If OKD node VMs are created from a template VM, then disk.EnableUUID=1 can be set on the template VM. VMs cloned from this template inherit this property.

  1. Create and assign roles to the vSphere Cloud Provider user and vSphere entities. vSphere Cloud Provider requires the following privileges to interact with vCenter.

    Roles Privileges Entities Propagate to Children


    Resource.AssignVMToPool System.Anonymous System.Read System.View VirtualMachine.Config.AddExistingDisk VirtualMachine.Config.AddNewDisk VirtualMachine.Config.AddRemoveDevice VirtualMachine.Config.RemoveDisk VirtualMachine.Inventory.Create VirtualMachine.Inventory.Delete

    Cluster, Hosts, VM Folder



    Datastore.AllocateSpace Datastore.FileManagement System.Anonymous System.Read System.View




    StorageProfile.View System.Anonymous System.Read System.View




    System.Anonymous System.Read System.View

    Datacenter, Datastore Cluster, Datastore Storage Folder


See the vSphere Documentation Center for steps to create a custom role, user, and role assignment.

Configuring OKD for vSphere

You can configure OKD for vSphere in two ways:

Option 1: Configuring OKD for vSphere using Ansible

You can configure OKD for VMware vSphere (VCP) by modifying the Ansible inventory file at installation time or after installation.

  1. Add the following to the Ansible inventory file:

    openshift_cloudprovider_vsphere_username=administrator@vsphere.local (1)
    openshift_cloudprovider_vsphere_host=10.x.y.32 (2)
    openshift_cloudprovider_vsphere_datacenter=<Datacenter> (3)
    openshift_cloudprovider_vsphere_datastore=<Datastore> (4)
    1 The user name with the appropriate permissions to create and attach disks in vSphere.
    2 The vCenter server address.
    3 The vCenter Datacenter name where the OKD VMs are located.
    4 The datastore used for creating VMDKs.

Installing with Ansible also creates and configures the following files to fit your vSphere environment:

  • /etc/origin/cloudprovider/vsphere.conf

  • /etc/origin/master/master-config.yaml

  • /etc/origin/node/node-config.yaml

As a reference, a full inventory is shown as follows:

The openshift_cloudprovider_vsphere_ values are required for OKD to be able to create vSphere resources such as VMDKs on datastores for persistent volumes.

$ cat /etc/ansible/hosts


# Required per${component}:${version}

VM deployment
openshift_cloudprovider_vsphere_vm_network="VM Network"

# vSphere Cloud provider

# Service catalog
openshift_hosted_etcd_storage_labels={'storage': 'etcd'}

openshift_master_identity_providers=[{'name': 'idm', 'challenge': 'true', 'login': 'true', 'kind': 'LDAPPasswordIdentityProvider', 'attributes': {'id': ['dn'], 'email': ['mail'], 'name': ['cn'], 'preferredUsername': ['uid']}, 'bindDN': 'uid=admin,cn=users,cn=accounts,dc=example,dc=com', 'bindPassword': 'ldapadmin', 'ca': '/etc/origin/master/ca.crt', 'insecure': 'false', 'url': 'ldap://,cn=accounts,dc=example,dc=com?uid?sub?(memberOf=cn=ose-user,cn=groups,cn=accounts,dc=openshift,dc=com)'}]

# Setup vsphere registry storage



# Red Hat subscription name and password

# metrics

# logging
openshift_logging_es_nodeselector={"": "true"}
openshift_logging_kibana_nodeselector={"": "true"}
openshift_logging_curator_nodeselector={"": "true"}
openshift_logging_fluentd_nodeselector={"": "true"}



[masters] vm_name=master-0 ipv4addr=10.x.y.103 vm_name=master-1 ipv4addr=10.x.y.104 vm_name=master-2 ipv4addr=10.x.y.105

[infras] vm_name=infra-0 ipv4addr=10.x.y.100 vm_name=infra-1 ipv4addr=10.x.y.101 vm_name=infra-2 ipv4addr=10.x.y.102

[apps] vm_name=app-0 ipv4addr=10.x.y.106 vm_name=app-1 ipv4addr=10.x.y.107 vm_name=app-2 ipv4addr=10.x.y.108


[lb] vm_name=haproxy-0 ipv4addr=10.x.y.200

[nodes] openshift_node_group_name="node-config-master" openshift_schedulable=true openshift_node_group_name="node-config-master" openshift_schedulable=true openshift_node_group_name="node-config-master" openshift_schedulable=true openshift_node_group_name="node-config-infra" openshift_node_group_name="node-config-infra" openshift_node_group_name="node-config-infra" openshift_node_group_name="node-config-compute" openshift_node_group_name="node-config-compute" openshift_node_group_name="node-config-compute"

Option 2: Manually configuring OKD for vSphere

Manually configuring master hosts for vSphere

Perform the following on all master hosts.

  1. Edit the master configuration file at /etc/origin/master/master-config.yaml by default on all masters and update the contents of the apiServerArguments and controllerArguments sections:

          - "vsphere"
          - "/etc/origin/cloudprovider/vsphere.conf"
          - "vsphere"
          - "/etc/origin/cloudprovider/vsphere.conf"

    When triggering a containerized installation, only the /etc/origin and /var/lib/origin directories are mounted to the master and node container. Therefore, master-config.yaml must be in /etc/origin/master rather than /etc/.

  2. When you configure OKD for vSphere using Ansible, the /etc/origin/cloudprovider/vsphere.conf file is created automatically. Because you are manually configuring OKD for vSphere, you must create the file and enter the following:

    [Global] (1)
            user = "myusername" (2)
            password = "mypassword" (3)
            port = "443" (4)
            insecure-flag = "1" (5)
            datacenter = "mydatacenter" (6)
    [VirtualCenter ""] (7)
            user = "myvCenterusername"
            password = "password"
    [VirtualCenter ""] (8)
            port = "448"
            insecure-flag = "0"
    [Workspace] (9)
            server = "" (10)
            datacenter = "mydatacenter"
            folder = "path/to/vms" (11)
            datastore = "shared-datastore" (12)
            resourcepool-path = "myresourcepoolpath" (13)
            scsicontrollertype = pvscsi (14)
            public-network = "VM Network" (15)
    1 Any properties set in the [Global] section are used for all specified vcenters unless overriden by the settings in the individual [VirtualCenter] sections.
    2 vCenter username for the vSphere cloud provider.
    3 vCenter password for the specified user.
    4 Optional. Port number for the vCenter server. Defaults to port 443.
    5 Set to 1 if the vCenter uses a self-signed certificate.
    6 Name of the data center on which Node VMs are deployed.
    7 Override specific [Global] properties for this Virtual Center. Possible setting scan be [Port], [user], [insecure-flag], [datacenters]. Any settings not specified are pulled from the [Global] section.
    8 Optional. Additional vCenter server.
    9 Set any properties used for various vSphere Cloud Provider functionality. For example, dynamic provisioning, Storage Profile Based Volume provisioning, and others.
    10 IP Address or FQDN for the vCenter server.
    11 Path to the VM directory for node VMs.
    12 Set to the name of the datastore to use for provisioning volumes using the storage classes or dynamic provisioning. Prior to OKD 3.9, if the datastore was located in a storage directory or is a member of a datastore cluster, the full path was required.
    13 Optional. Set to the path to the resource pool where dummy VMs for Storage Profile Based volume provisioning must be created.
    14 Type of SCSI controller the VMDK will be attached to the VM as.
    15 Set to the network port group for vSphere to access the node, which is called VM Network by default. This is the node host’s ExternalIP that is registered with Kubernetes.

    The cluster installation process configures single-zone or single vCenter by default.

    Deploying OKD in vSphere on different zones can be helpful to avoid single-point-of-failures, but creates the need for shared storage across zones. If an OKD node host goes down in zone "A" and the pods should be moved to zone "B". See Multiple zone limitations in the Kubernetes documentation for more information.

    This ensures that the VMDK always presents a consistent UUID to the VM, allowing the disk to be mounted properly.

    For every virtual machine node that will be participating in the cluster: VM properties → VM Options → Advanced → Configuration Parameters → disk.enableUUID=TRUE

    Alternatively, the GOVC tool can be used:

    1. Set up the GOVC environment:

      export GOVC_URL='vCenter IP OR FQDN'
      export GOVC_USERNAME='vCenter User'
      export GOVC_PASSWORD='vCenter Password'
      export GOVC_INSECURE=1
  3. Find the Node VM paths:

    govc ls /datacenter/vm/<vm-folder-name>
    1. Set disk.EnableUUID to true for all VMs:

      govc vm.change -e="disk.enableUUID=1" -vm='VM Path'

      If OKD node VMs are created from a template VM, then disk.EnableUUID=1 can be set on the template VM. VMs cloned from this template inherit this property.

  4. Restart the OKD host services:

    # master-restart api
    # master-restart controllers
    # systemctl restart atomic-openshift-node

Manually configuring node hosts for vSphere

Perform the following on all node hosts.


To configure the OKD nodes for vSphere:

  1. Edit the appropriate node configuration map and update the contents of the kubeletArguments section:

        - "vsphere"
        - "/etc/origin/cloudprovider/vsphere.conf"

    The nodeName must match the VM name in vSphere in order for the cloud provider integration to work properly. The name must also be RFC1123 compliant.

  2. Restart the OKD services on all nodes.

    # systemctl restart atomic-openshift-node

Applying Configuration Changes

Start or restart OKD services on all master and node hosts to apply your configuration changes, see Restarting OKD services:

# master-restart api
# master-restart controllers
# systemctl restart atomic-openshift-node

Switching from not using a cloud provider to using a cloud provider produces an error message. Adding the cloud provider tries to delete the node because the node switches from using the hostname as the externalID (which would have been the case when no cloud provider was being used) to using the cloud provider’s instance-id (which is what the cloud provider specifies). To resolve this issue:

  1. Log in to the CLI as a cluster administrator.

  2. Check and back up existing node labels:

    $ oc describe node <node_name> | grep -Poz '(?s)Labels.*\n.*(?=Taints)'
  3. Delete the nodes:

    $ oc delete node <node_name>
  4. On each node host, restart the OKD service.

    # systemctl restart origin-node
  5. Add back any labels on each node that you previously had.

Configuring OKD to use vSphere storage

OKD supports VMware vSphere’s Virtual Machine Disk (VMDK) volumes. You can provision your OKD cluster with persistent storage using VMware vSphere. Some familiarity with Kubernetes and VMware vSphere is assumed.

OKD creates the disk in vSphere and attaches the disk to the proper instance.

The OKD persistent volume (PV) framework allows administrators to provision a cluster with persistent storage and gives users a way to request those resources without having any knowledge of the underlying infrastructure. vSphere VMDK volumes can be provisioned dynamically.

PVs are not bound to a single project or namespace; they can be shared across the OKD cluster. PV claims, however, are specific to a project or namespace and can be requested by users.

High availability of storage in the infrastructure is left to the underlying storage provider.


Before creating PVs using vSphere, ensure your OKD cluster meets the following requirements:

  • OKD must first be configured for vSphere Cloud Provider

  • Each node host in the infrastructure must match the vSphere VM name.

  • Each node host must be in the same resource group.

Provisioning VMware vSphere volumes

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OKD. After ensuring OKD is configured for vSphere, all that is required for OKD and vSphere is a VM folder path, file system type, and the PersistentVolume API.

Creating persistent volumes
  1. Define a PV object definition, for example vsphere-pv.yaml:

    apiVersion: v1
    kind: PersistentVolume
      name: pv0001 (1)
        storage: 2Gi (2)
        - ReadWriteOnce
      persistentVolumeReclaimPolicy: Retain
      vsphereVolume: (3)
        volumePath: "[datastore1] volumes/myDisk" (4)
        fsType: ext4 (5)
    1 The name of the volume. This must be how it is identified by PV claims or from pods.
    2 The amount of storage allocated to this volume.
    3 The volume type being used. This example uses vsphereVolume, and the label is used to mount a vSphere VMDK volume into pods. The contents of a volume are preserved when it is unmounted. The volume type supports VMFS and VSAN datastore.
    4 This VMDK volume must exist, and you must include brackets ([]) in the volume definition.
    5 The file system type to mount. For example, ext4, xfs, or other file-systems.

    Changing the value of the fsType parameter after the volume is formatted and provisioned can result in data loss and pod failure.

  2. Create the PV:

    $ oc create -f vsphere-pv.yaml
      persistentvolume "pv0001" created
  3. Verify that the PV was created:

    $ oc get pv
    pv0001  <none>  2Gi       RWO           Available                 2s

Now you can request storage using PV claims, which can now use your PV.

PV claims only exist in the user’s namespace and can only be referenced by a pod within that same namespace. Any attempt to access a PV from a different namespace causes the pod to fail.

Formatting VMware vSphere volumes

Before OKD mounts the volume and passes it to a container, it checks that the volume contains a file system as specified by the fsType parameter in the PV definition. If the device is not formatted with the file system, all data from the device is erased, and the device is automatically formatted with the given file system.

This allows unformatted vSphere volumes to be used as PVs, because OKD formats them before the first use.

Provisioning VMware vSphere volumes via a Storage Class

  1. OKD creates the following storageclass when you use the vsphere-volume provisioner and if you use the openshift_cloudprovider_kind=vsphere and openshift_vsphere_* variables in the Ansible inventory. Otherwise, you can create it manually:

    $ oc get --export storageclass vsphere-standard -o yaml
    kind: StorageClass
      name: "vsphere-standard" (1)
    provisioner: (2)
        diskformat: zeroedthick (3)
        datastore: "ose3-vmware" (4)
    reclaimPolicy: Delete
    1 The name of the storage class.
    2 The type of storage provisioner: vsphere-volume
    3 The type of disk: zeroedthick, thin.
    4 The source datastore where the disk will be created.
  2. After you request a PV and using the storageclass shown in the previous step, OKD creates VMDK disks in the vSphere infrastructure. To verify that the disks were created:

    $ ls /vmfs/volumes/ose3-vmware/kubevols | grep kubernetes

vSphere-volume disks are ReadWriteOnce access mode, which means the volume can be mounted as read-write by a single node. See the Access modes section of the Architecture guide for more information.

About Red Hat OpenShift Container Storage

Red Hat OpenShift Container Storage (RHOCS) is a provider of agnostic persistent storage for OKD either in-house or in hybrid clouds. As a Red Hat storage solution, RHOCS is completely integrated with OKD for deployment, management, and monitoring regardless if it is installed on OKD (converged) or with OKD (independent). OpenShift Container Storage is not limited to a single availability zone or node, which makes it likely to survive an outage. You can find complete instructions for using RHOCS in the RHOCS 3.10 Deployment Guide.

Configuring the OKD registry for vSphere

The following steps define the manual process of storage creation, which is used to create storage for the registry if a storage class is unavailable or not used.

cd /vmfs/volumes/datastore1/
mkdir kubevols # Not needed but good hygiene

cd /vmfs/volumes/vsanDatastore/
/usr/lib/vmware/osfs/bin/osfs-mkdir kubevols # Needed

cd kubevols

vmkfstools -c 25G registry.vmdk

Configuring the OKD registry for vSphere using Ansible


To configure the Ansible inventory for the registry to use a vSphere volume:

# vSphere Provider Configuration
openshift_hosted_registry_storage_kind=vsphere (1)
openshift_hosted_registry_storage_access_modes=['ReadWriteOnce'] (2)
openshift_hosted_registry_storage_annotations=[''] (3)
openshift_hosted_registry_replicas=1 (4)
1 The storage type.
2 vSphere volumes only support RWO.
3 The annotation for the volume.
4 The number of replicas to configure.

The brackets in the configuration file above are required.

Manually configuring OKD registry for vSphere

To use vSphere volume storage, edit the registry’s configuration file and mount to the registry pod.

  1. Create a new configuration file from the vSphere volume:

      kind: PersistentVolumeClaim
      apiVersion: v1
        name: vsphere-registry-storage
          - ReadWriteOnce
            storage: 30Gi
  2. Create the file in OKD:

    $ oc create -f pvc-registry.yaml
  3. Update the volume configuration to use the new PVC:

    $ oc volume dc docker-registry --add --name=registry-storage -t \
    pvc --claim-name=vsphere-registry-storage --overwrite
  4. Redeploy the registry to read the updated configuration:

    $ oc rollout latest docker-registry -n default
  5. Verify the volume has been assigned:

    $ oc volume dc docker-registry -n default

Backup of persistent volumes

OKD provisions new volumes as independent persistent disks to freely attach and detach the volume on any node in the cluster. As a consequence, it is not possible to back up volumes that use snapshots.

To create a backup of PVs:

  1. Stop the application using the PV.

  2. Clone the persistent disk.

  3. Restart the application.

  4. Create a backup of the cloned disk.

  5. Delete the cloned disk.