VPC
In OKD version 4.13, you can install a cluster on
Amazon Web Services (AWS) into a government region. To configure the
region, modify parameters in the install-config.yaml
file before you
install the cluster.
You reviewed details about the OKD installation and update processes.
You read the documentation on selecting a cluster installation method and preparing it for users.
You configured an AWS account to host the cluster.
If you have an AWS profile stored on your computer, it must not use a temporary session token that you generated while using a multi-factor authentication device. The cluster continues to use your current AWS credentials to create AWS resources for the entire life of the cluster, so you must use long-lived credentials. To generate appropriate keys, see Managing Access Keys for IAM Users in the AWS documentation. You can supply the keys when you run the installation program. |
If you use a firewall, you configured it to allow the sites that your cluster requires access to.
If the cloud identity and access management (IAM) APIs are not accessible in your environment, or if you do not want to store an administrator-level credential secret in the kube-system
namespace, you can manually create and maintain IAM credentials.
OKD supports deploying a cluster to an AWS GovCloud (US) region.
The following AWS GovCloud partitions are supported:
us-gov-east-1
us-gov-west-1
Before you can install the cluster, you must:
Provide an existing private AWS VPC and subnets to host the cluster.
Public zones are not supported in Route 53 in AWS GovCloud. As a result, clusters must be private when you deploy to an AWS government region.
Manually create the installation configuration file (install-config.yaml
).
You can deploy a private OKD cluster that does not expose external endpoints. Private clusters are accessible from only an internal network and are not visible to the internet.
Public zones are not supported in Route 53 in an AWS GovCloud Region. Therefore, clusters must be private if they are deployed to an AWS GovCloud Region. |
By default, OKD is provisioned to use publicly-accessible DNS and endpoints. A private cluster sets the DNS, Ingress Controller, and API server to private when you deploy your cluster. This means that the cluster resources are only accessible from your internal network and are not visible to the internet.
If the cluster has any public subnets, load balancer services created by administrators might be publicly accessible. To ensure cluster security, verify that these services are explicitly annotated as private. |
To deploy a private cluster, you must:
Use existing networking that meets your requirements. Your cluster resources might be shared between other clusters on the network.
Deploy from a machine that has access to:
The API services for the cloud to which you provision.
The hosts on the network that you provision.
The internet to obtain installation media.
You can use any machine that meets these access requirements and follows your company’s guidelines. For example, this machine can be a bastion host on your cloud network or a machine that has access to the network through a VPN.
To create a private cluster on Amazon Web Services (AWS), you must provide an existing private VPC and subnets to host the cluster. The installation program must also be able to resolve the DNS records that the cluster requires. The installation program configures the Ingress Operator and API server for access from only the private network.
The cluster still requires access to internet to access the AWS APIs.
The following items are not required or created when you install a private cluster:
Public subnets
Public load balancers, which support public ingress
A public Route 53 zone that matches the baseDomain
for the cluster
The installation program does use the baseDomain
that you specify to create a private Route 53 zone and the required records for the cluster. The cluster is configured so that the Operators do not create public records for the cluster and all cluster machines are placed in the private subnets that you specify.
The ability to add public functionality to a private cluster is limited.
You cannot make the Kubernetes API endpoints public after installation without taking additional actions, including creating public subnets in the VPC for each availability zone in use, creating a public load balancer, and configuring the control plane security groups to allow traffic from the internet on 6443 (Kubernetes API port).
If you use a public Service type load balancer, you must tag a public subnet in each availability zone with kubernetes.io/cluster/<cluster-infra-id>: shared
so that AWS can use them to create public load balancers.
In OKD 4.13, you can deploy a cluster into existing subnets in an existing Amazon Virtual Private Cloud (VPC) in Amazon Web Services (AWS). By deploying OKD into an existing AWS VPC, you might be able to avoid limit constraints in new accounts or more easily abide by the operational constraints that your company’s guidelines set. If you cannot obtain the infrastructure creation permissions that are required to create the VPC yourself, use this installation option.
Because the installation program cannot know what other components are also in your existing subnets, it cannot choose subnet CIDRs and so forth on your behalf. You must configure networking for the subnets that you install your cluster to yourself.
The installation program no longer creates the following components:
Internet gateways
NAT gateways
Subnets
Route tables
VPCs
VPC DHCP options
VPC endpoints
The installation program requires that you use the cloud-provided DNS server. Using a custom DNS server is not supported and causes the installation to fail. |
If you use a custom VPC, you must correctly configure it and its subnets for the installation program and the cluster to use. See Amazon VPC console wizard configurations and Work with VPCs and subnets in the AWS documentation for more information on creating and managing an AWS VPC.
The installation program cannot:
Subdivide network ranges for the cluster to use.
Set route tables for the subnets.
Set VPC options like DHCP.
You must complete these tasks before you install the cluster. See VPC networking components and Route tables for your VPC for more information on configuring networking in an AWS VPC.
Your VPC must meet the following characteristics:
The VPC must not use the kubernetes.io/cluster/.*: owned
, Name
, and openshift.io/cluster
tags.
The installation program modifies your subnets to add the kubernetes.io/cluster/.*: shared
tag, so your subnets must have at least one free tag slot available for it. See Tag Restrictions in the AWS documentation to confirm that the installation program can add a tag to each subnet that you specify. You cannot use a Name
tag, because it overlaps with the EC2 Name
field and the installation fails.
You must enable the enableDnsSupport
and enableDnsHostnames
attributes in your VPC, so that the cluster can use the Route 53 zones that are attached to the VPC to resolve cluster’s internal DNS records. See DNS Support in Your VPC in the AWS documentation.
If you prefer to use your own Route 53 hosted private zone, you must associate the existing hosted zone with your VPC prior to installing a cluster. You can define your hosted zone using the platform.aws.hostedZone
field in the install-config.yaml
file.
If you are working in a disconnected environment, you are unable to reach the public IP addresses for EC2, ELB, and S3 endpoints. Depending on the level to which you want to restrict internet traffic during the installation, the following configuration options are available:
Create a VPC endpoint and attach it to the subnets that the clusters are using. Name the endpoints as follows:
ec2.<aws_region>.amazonaws.com
elasticloadbalancing.<aws_region>.amazonaws.com
s3.<aws_region>.amazonaws.com
With this option, network traffic remains private between your VPC and the required AWS services.
As part of the installation process, you can configure an HTTP or HTTPS proxy. With this option, internet traffic goes through the proxy to reach the required AWS services.
As part of the installation process, you can configure an HTTP or HTTPS proxy with VPC endpoints. Create a VPC endpoint and attach it to the subnets that the clusters are using. Name the endpoints as follows:
ec2.<aws_region>.amazonaws.com
elasticloadbalancing.<aws_region>.amazonaws.com
s3.<aws_region>.amazonaws.com
When configuring the proxy in the install-config.yaml
file, add these endpoints to the noProxy
field. With this option, the proxy prevents the cluster from accessing the internet directly. However, network traffic remains private between your VPC and the required AWS services.
You must provide a suitable VPC and subnets that allow communication to your machines.
Component | AWS type | Description | |
---|---|---|---|
VPC |
|
You must provide a public VPC for the cluster to use. The VPC uses an endpoint that references the route tables for each subnet to improve communication with the registry that is hosted in S3. |
|
Public subnets |
|
Your VPC must have public subnets for between 1 and 3 availability zones and associate them with appropriate Ingress rules. |
|
Internet gateway |
|
You must have a public internet gateway, with public routes, attached to the VPC. In the provided templates, each public subnet has a NAT gateway with an EIP address. These NAT gateways allow cluster resources, like private subnet instances, to reach the internet and are not required for some restricted network or proxy scenarios. |
|
Network access control |
|
You must allow the VPC to access the following ports: |
|
Port |
Reason |
||
|
Inbound HTTP traffic |
||
|
Inbound HTTPS traffic |
||
|
Inbound SSH traffic |
||
|
Inbound ephemeral traffic |
||
|
Outbound ephemeral traffic |
||
Private subnets |
|
Your VPC can have private subnets. The provided CloudFormation templates can create private subnets for between 1 and 3 availability zones. If you use private subnets, you must provide appropriate routes and tables for them. |
To ensure that the subnets that you provide are suitable, the installation program confirms the following data:
All the subnets that you specify exist.
You provide private subnets.
The subnet CIDRs belong to the machine CIDR that you specified.
You provide subnets for each availability zone. Each availability zone contains no more than one public and one private subnet. If you use a private cluster, provide only a private subnet for each availability zone. Otherwise, provide exactly one public and private subnet for each availability zone.
You provide a public subnet for each private subnet availability zone. Machines are not provisioned in availability zones that you do not provide private subnets for.
If you destroy a cluster that uses an existing VPC, the VPC is not deleted. When you remove the OKD cluster from a VPC, the kubernetes.io/cluster/.*: shared
tag is removed from the subnets that it used.
Starting with OKD 4.3, you do not need all of the permissions that are required for an installation program-provisioned infrastructure cluster to deploy a cluster. This change mimics the division of permissions that you might have at your company: some individuals can create different resource in your clouds than others. For example, you might be able to create application-specific items, like instances, buckets, and load balancers, but not networking-related components such as VPCs, subnets, or ingress rules.
The AWS credentials that you use when you create your cluster do not need the networking permissions that are required to make VPCs and core networking components within the VPC, such as subnets, routing tables, internet gateways, NAT, and VPN. You still need permission to make the application resources that the machines within the cluster require, such as ELBs, security groups, S3 buckets, and nodes.
If you deploy OKD to an existing network, the isolation of cluster services is reduced in the following ways:
You can install multiple OKD clusters in the same VPC.
ICMP ingress is allowed from the entire network.
TCP 22 ingress (SSH) is allowed to the entire network.
Control plane TCP 6443 ingress (Kubernetes API) is allowed to the entire network.
Control plane TCP 22623 ingress (MCS) is allowed to the entire network.
During an OKD installation, you can provide an SSH public key to the installation program. The key is passed to the Fedora CoreOS (FCOS) nodes through their Ignition config files and is used to authenticate SSH access to the nodes. The key is added to the ~/.ssh/authorized_keys
list for the core
user on each node, which enables password-less authentication.
After the key is passed to the nodes, you can use the key pair to SSH in to the FCOS nodes as the user core
. To access the nodes through SSH, the private key identity must be managed by SSH for your local user.
If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you must provide the SSH public key during the installation process. The ./openshift-install gather
command also requires the SSH public key to be in place on the cluster nodes.
Do not skip this procedure in production environments, where disaster recovery and debugging is required. |
You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs. |
On clusters running Fedora CoreOS (FCOS), the SSH keys specified in the Ignition config files are written to the |
If you do not have an existing SSH key pair on your local machine to use for authentication onto your cluster nodes, create one. For example, on a computer that uses a Linux operating system, run the following command:
$ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> (1)
1 | Specify the path and file name, such as ~/.ssh/id_ed25519 , of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory. |
View the public SSH key:
$ cat <path>/<file_name>.pub
For example, run the following to view the ~/.ssh/id_ed25519.pub
public key:
$ cat ~/.ssh/id_ed25519.pub
Add the SSH private key identity to the SSH agent for your local user, if it has not already been added. SSH agent management of the key is required for password-less SSH authentication onto your cluster nodes, or if you want to use the ./openshift-install gather
command.
On some distributions, default SSH private key identities such as |
If the ssh-agent
process is not already running for your local user, start it as a background task:
$ eval "$(ssh-agent -s)"
Agent pid 31874
Add your SSH private key to the ssh-agent
:
$ ssh-add <path>/<file_name> (1)
1 | Specify the path and file name for your SSH private key, such as ~/.ssh/id_ed25519 |
Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
When you install OKD, provide the SSH public key to the installation program.
If you are deploying an OKD cluster using an AWS Marketplace image, you must first subscribe through AWS. Subscribing to the offer provides you with the AMI ID that the installation program uses to deploy worker nodes.
You have an AWS account to purchase the offer. This account does not have to be the same account that is used to install the cluster.
Complete the OKD subscription from the AWS Marketplace.
Record the AMI ID for your specific region. As part of the installation process, you must update the install-config.yaml
file with this value before deploying the cluster.
install-config.yaml
file with AWS Marketplace worker nodesapiVersion: v1
baseDomain: example.com
compute:
- hyperthreading: Enabled
name: worker
platform:
aws:
amiID: ami-06c4d345f7c207239 (1)
type: m5.4xlarge
replicas: 3
metadata:
name: test-cluster
platform:
aws:
region: us-east-2 (2)
sshKey: ssh-ed25519 AAAA...
pullSecret: '{"auths": ...}'
1 | The AMI ID from your AWS Marketplace subscription. |
2 | Your AMI ID is associated with a specific AWS region. When creating the installation configuration file, ensure that you select the same AWS region that you specified when configuring your subscription. |
Before you install OKD, download the installation file on the host you are using for installation.
You have a computer that runs Linux or macOS, with 500 MB of local disk space.
Download installer from https://github.com/openshift/okd/releases
The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster. |
Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OKD uninstallation procedures for your specific cloud provider. |
Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
$ tar -xvf openshift-install-linux.tar.gz
Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OKD components.
Using a pull secret from the Red Hat OpenShift Cluster Manager is not required. You can use a pull secret for another private registry. Or, if you do not need the cluster to pull images from a private registry, you can use {"auths":{"fake":{"auth":"aWQ6cGFzcwo="}}}
as the pull secret when prompted during the installation.
If you do not use the pull secret from the Red Hat OpenShift Cluster Manager:
Red Hat Operators are not available.
The Telemetry and Insights operators do not send data to Red Hat.
Content from the Red Hat Container Catalog registry, such as image streams and Operators, are not available.
Installing the cluster requires that you manually create the installation configuration file.
You have an SSH public key on your local machine to provide to the installation program. The key will be used for SSH authentication onto your cluster nodes for debugging and disaster recovery.
You have obtained the OKD installation program and the pull secret for your cluster.
Create an installation directory to store your required installation assets in:
$ mkdir <installation_directory>
You must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OKD version. |
Customize the sample install-config.yaml
file template that is provided and save
it in the <installation_directory>
.
You must name this configuration file |
Back up the install-config.yaml
file so that you can use it to install
multiple clusters.
The |
Before you deploy an OKD cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml
installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml
file to provide more details about the platform.
After installation, you cannot modify these parameters in the |
Required installation configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
|
The API version for the |
String |
|
The base domain of your cloud provider. The base domain is used to create routes to your OKD cluster components. The full DNS name for your cluster is a combination of the |
A fully-qualified domain or subdomain name, such as |
|
Kubernetes resource |
Object |
|
The name of the cluster. DNS records for the cluster are all subdomains of |
String of lowercase letters, hyphens ( |
|
The configuration for the specific platform upon which to perform the installation: |
Object |
You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
Only IPv4 addresses are supported.
Globalnet is not supported with Red Hat OpenShift Data Foundation disaster recovery solutions. For regional disaster recovery scenarios, ensure that you use a nonoverlapping range of private IP addresses for the cluster and service networks in each cluster. |
Parameter | Description | Values | ||
---|---|---|---|---|
|
The configuration for the cluster network. |
Object
|
||
|
The Red Hat OpenShift Networking network plugin to install. |
Either |
||
|
The IP address blocks for pods. The default value is If you specify multiple IP address blocks, the blocks must not overlap. |
An array of objects. For example:
|
||
|
Required if you use An IPv4 network. |
An IP address block in Classless Inter-Domain Routing (CIDR) notation.
The prefix length for an IPv4 block is between |
||
|
The subnet prefix length to assign to each individual node. For example, if |
A subnet prefix. The default value is |
||
|
The IP address block for services. The default value is The OpenShift SDN and OVN-Kubernetes network plugins support only a single IP address block for the service network. |
An array with an IP address block in CIDR format. For example:
|
||
|
The IP address blocks for machines. If you specify multiple IP address blocks, the blocks must not overlap. |
An array of objects. For example:
|
||
|
Required if you use |
An IP network block in CIDR notation. For example,
|
Optional installation configuration parameters are described in the following table:
Parameter | Description | Values | ||||
---|---|---|---|---|---|---|
|
A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured. |
String |
||||
|
Controls the installation of optional core cluster components. You can reduce the footprint of your OKD cluster by disabling optional components. For more information, see the "Cluster capabilities" page in Installing. |
String array |
||||
|
Selects an initial set of optional capabilities to enable. Valid values are |
String |
||||
|
Extends the set of optional capabilities beyond what you specify in |
String array |
||||
|
Enables workload partitioning, which isolates OKD services, cluster management workloads, and infrastructure pods to run on a reserved set of CPUs. Workload partitioning can only be enabled during installation and cannot be disabled after installation. While this field enables workload partitioning, it does not configure workloads to use specific CPUs. For more information, see the Workload partitioning page in the Scalability and Performance section. |
|
||||
|
The configuration for the machines that comprise the compute nodes. |
Array of |
||||
|
Determines the instruction set architecture of the machines in the pool. Currently, clusters with varied architectures are not supported. All pools must specify the same architecture. Valid values are |
String |
||||
compute: hyperthreading: |
Whether to enable or disable simultaneous multithreading, or
|
|
||||
|
Required if you use |
|
||||
|
Required if you use |
|
||||
|
The number of compute machines, which are also known as worker machines, to provision. |
A positive integer greater than or equal to |
||||
|
Enables the cluster for a feature set. A feature set is a collection of OKD features that are not enabled by default. For more information about enabling a feature set during installation, see "Enabling features using feature gates". |
String. The name of the feature set to enable, such as |
||||
|
The configuration for the machines that comprise the control plane. |
Array of |
||||
|
Determines the instruction set architecture of the machines in the pool. Currently, clusters with varied architectures are not supported. All pools must specify the same architecture. Valid values are |
String |
||||
controlPlane: hyperthreading: |
Whether to enable or disable simultaneous multithreading, or
|
|
||||
|
Required if you use |
|
||||
|
Required if you use |
|
||||
|
The number of control plane machines to provision. |
The only supported value is |
||||
|
The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
|
|
||||
|
Sources and repositories for the release-image content. |
Array of objects. Includes a |
||||
|
Required if you use |
String |
||||
|
Specify one or more repositories that may also contain the same images. |
Array of strings |
||||
|
How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes. |
|
||||
|
The SSH key to authenticate access to your cluster machines.
|
For example, |
Not all CCO modes are supported for all cloud providers. For more information about CCO modes, see the "Managing cloud provider credentials" entry in the Authentication and authorization content.
If your AWS account has service control policies (SCP) enabled, you must configure the |
Setting this parameter to |
Optional AWS configuration parameters are described in the following table:
Parameter | Description | Values | ||
---|---|---|---|---|
|
The AWS AMI used to boot compute machines for the cluster. This is required for regions that require a custom FCOS AMI. |
Any published or custom FCOS AMI that belongs to the set AWS region. See FCOS AMIs for AWS infrastructure for available AMI IDs. |
||
|
A pre-existing AWS IAM role applied to the compute machine pool instance profiles. You can use these fields to match naming schemes and include predefined permissions boundaries for your IAM roles. If undefined, the installation program creates a new IAM role. |
The name of a valid AWS IAM role. |
||
|
The Input/Output Operations Per Second (IOPS) that is reserved for the root volume. |
Integer, for example |
||
|
The size in GiB of the root volume. |
Integer, for example |
||
|
The type of the root volume. |
Valid AWS EBS volume type,
such as |
||
|
The Amazon Resource Name (key ARN) of a KMS key. This is required to encrypt operating system volumes of worker nodes with a specific KMS key. |
Valid key ID or the key ARN. |
||
|
The EC2 instance type for the compute machines. |
Valid AWS instance type, such as |
||
|
The availability zones where the installation program creates machines for the compute machine pool. If you provide your own VPC, you must provide a subnet in that availability zone. |
A list of valid AWS availability zones, such as |
||
|
The AWS region that the installation program creates compute resources in. |
Any valid AWS region, such as
|
||
|
The AWS AMI used to boot control plane machines for the cluster. This is required for regions that require a custom FCOS AMI. |
Any published or custom FCOS AMI that belongs to the set AWS region. See FCOS AMIs for AWS infrastructure for available AMI IDs. |
||
|
A pre-existing AWS IAM role applied to the control plane machine pool instance profiles. You can use these fields to match naming schemes and include predefined permissions boundaries for your IAM roles. If undefined, the installation program creates a new IAM role. |
The name of a valid AWS IAM role. |
||
|
The Amazon Resource Name (key ARN) of a KMS key. This is required to encrypt operating system volumes of control plane nodes with a specific KMS key. |
Valid key ID and the key ARN. |
||
|
The EC2 instance type for the control plane machines. |
Valid AWS instance type, such as |
||
|
The availability zones where the installation program creates machines for the control plane machine pool. |
A list of valid AWS availability zones, such as |
||
|
The AWS region that the installation program creates control plane resources in. |
Valid AWS region, such as |
||
|
The AWS AMI used to boot all machines for the cluster. If set, the AMI must belong to the same region as the cluster. This is required for regions that require a custom FCOS AMI. |
Any published or custom FCOS AMI that belongs to the set AWS region. See FCOS AMIs for AWS infrastructure for available AMI IDs. |
||
|
An existing Route 53 private hosted zone for the cluster. You can only use a pre-existing hosted zone when also supplying your own VPC. The hosted zone must already be associated with the user-provided VPC before installation. Also, the domain of the hosted zone must be the cluster domain or a parent of the cluster domain. If undefined, the installation program creates a new hosted zone. |
String, for example |
||
|
The AWS service endpoint name. Custom endpoints are only required for cases where alternative AWS endpoints must be used. Custom API endpoints can be specified for EC2, S3, IAM, Elastic Load Balancing, Tagging, Route 53, and STS AWS services. |
Valid AWS service endpoint name. |
||
|
The AWS service endpoint URL. The URL must use the |
Valid AWS service endpoint URL. |
||
|
A map of keys and values that the installation program adds as tags to all resources that it creates. |
Any valid YAML map, such as key value pairs in the
|
||
|
A flag that directs in-cluster Operators to include the specified user tags in the tags of the AWS resources that the Operators create. |
Boolean values, for example |
||
|
If you provide the VPC instead of allowing the installation program to create the VPC for you, specify the subnet for the cluster to use. The subnet must be part of the same For a standard cluster, specify a public and a private subnet for each availability zone. For a private cluster, specify a private subnet for each availability zone. For clusters that use AWS Local Zones, you must add AWS Local Zone subnets to this list to ensure edge machine pool creation. |
Valid subnet IDs. |
Each cluster machine must meet the following minimum requirements:
Machine | Operating System | vCPU [1] | Virtual RAM | Storage | Input/Output Per Second (IOPS)[2] |
---|---|---|---|---|---|
Bootstrap |
FCOS |
4 |
16 GB |
100 GB |
300 |
Control plane |
FCOS |
4 |
16 GB |
100 GB |
300 |
Compute |
FCOS |
2 |
8 GB |
100 GB |
300 |
One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or Hyper-Threading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.
OKD and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.
As with all user-provisioned installations, if you choose to use Fedora compute machines in your cluster, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks. Use of Fedora 7 compute machines is deprecated and has been removed in OKD 4.10 and later.
As of OKD version 4.13, RHCOS is based on RHEL version 9.2, which updates the micro-architecture requirements. The following list contains the minimum instruction set architectures (ISA) that each architecture requires:
For more information, see RHEL Architectures. |
If an instance type for your platform meets the minimum requirements for cluster machines, it is supported to use in OKD.
The following Amazon Web Services (AWS) instance types have been tested with OKD.
Use the machine types included in the following charts for your AWS instances. If you use an instance type that is not listed in the chart, ensure that the instance size you use matches the minimum resource requirements that are listed in "Minimum resource requirements for cluster installation". |
c4.*
c5.*
c5a.*
i3.*
m4.*
m5.*
m5a.*
m6a.*
m6i.*
r4.*
r5.*
r5a.*
r6i.*
t3.*
t3a.*
The following Amazon Web Services (AWS) 64-bit ARM instance types have been tested with OKD.
Use the machine types included in the following charts for your AWS ARM instances. If you use an instance type that is not listed in the chart, ensure that the instance size you use matches the minimum resource requirements that are listed in "Minimum resource requirements for cluster installation". |
c6g.*
c7g.*
m6g.*
m7g.*
r8g.*
You can customize the installation configuration file (install-config.yaml
) to specify more details about your OKD cluster’s platform or modify the values of the required parameters.
This sample YAML file is provided for reference only. Use it as a resource to enter parameter values into the installation configuration file that you created manually. |
apiVersion: v1
baseDomain: example.com (1)
credentialsMode: Mint (2)
controlPlane: (3) (4)
hyperthreading: Enabled (5)
name: master
platform:
aws:
zones:
- us-gov-west-1a
- us-gov-west-1b
rootVolume:
iops: 4000
size: 500
type: io1 (6)
metadataService:
authentication: Optional (7)
type: m6i.xlarge
replicas: 3
compute: (3)
- hyperthreading: Enabled (5)
name: worker
platform:
aws:
rootVolume:
iops: 2000
size: 500
type: io1 (6)
metadataService:
authentication: Optional (7)
type: c5.4xlarge
zones:
- us-gov-west-1c
replicas: 3
metadata:
name: test-cluster (1)
networking:
clusterNetwork:
- cidr: 10.128.0.0/14
hostPrefix: 23
machineNetwork:
- cidr: 10.0.0.0/16
networkType: OVNKubernetes (8)
serviceNetwork:
- 172.30.0.0/16
platform:
aws:
region: us-gov-west-1 (1)
propagateUserTags: true (3)
userTags:
adminContact: jdoe
costCenter: 7536
subnets: (9)
- subnet-1
- subnet-2
- subnet-3
amiID: ami-96c6f8f7 (10)
serviceEndpoints: (11)
- name: ec2
url: https://vpce-id.ec2.us-west-2.vpce.amazonaws.com
hostedZone: Z3URY6TWQ91KVV (12)
sshKey: ssh-ed25519 AAAA... (13)
pullSecret: '{"auths": ...}' (1)
publish: Internal (14)
1 | Required. | ||
2 | Optional: Add this parameter to force the Cloud Credential Operator (CCO) to use the specified mode, instead of having the CCO dynamically try to determine the capabilities of the credentials. For details about CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content. | ||
3 | If you do not provide these parameters and values, the installation program provides the default value. | ||
4 | The controlPlane section is a single mapping, but the compute section is a
sequence of mappings. To meet the requirements of the different data structures,
the first line of the compute section must begin with a hyphen, - , and the
first line of the controlPlane section must not. Only one control plane pool is used. |
||
5 | Whether to enable or disable simultaneous multithreading, or
hyperthreading . By default, simultaneous multithreading is enabled
to increase the performance of your machines' cores. You can disable it by
setting the parameter value to Disabled . If you disable simultaneous
multithreading in some cluster machines, you must disable it in all cluster
machines.
|
||
6 | To configure faster storage for etcd, especially for larger clusters, set the storage type as io1 and set iops to 2000 . |
||
7 | Whether to require the Amazon EC2 Instance Metadata Service v2 (IMDSv2). To require IMDSv2, set the parameter value to Required . To allow the use of both IMDSv1 and IMDSv2, set the parameter value to Optional . If no value is specified, both IMDSv1 and IMDSv2 are allowed.
|
||
8 | The cluster network plugin to install. The supported values are OVNKubernetes and OpenShiftSDN . The default value is OVNKubernetes . |
||
9 | If you provide your own VPC, specify subnets for each availability zone that your cluster uses. | ||
10 | The ID of the AMI used to boot machines for the cluster. If set, the AMI must belong to the same region as the cluster. | ||
11 | The AWS service endpoints. Custom endpoints are required when installing to
an unknown AWS region. The endpoint URL must use the https protocol and the
host must trust the certificate. |
||
12 | The ID of your existing Route 53 private hosted zone. Providing an existing hosted zone requires that you supply your own VPC and the hosted zone is already associated with the VPC prior to installing your cluster. If undefined, the installation program creates a new hosted zone. | ||
13 | You can optionally provide the sshKey value that you use to access the machines in your cluster.
|
||
14 | How to publish the user-facing endpoints of your cluster. Set publish to Internal to deploy a private cluster, which cannot be accessed from the internet. The default value is External . |
Production environments can deny direct access to the internet and instead have
an HTTP or HTTPS proxy available. You can configure a new OKD
cluster to use a proxy by configuring the proxy settings in the
install-config.yaml
file.
You have an existing install-config.yaml
file.
You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy
object’s spec.noProxy
field to bypass the proxy if necessary.
The For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and OpenStack, the |
Edit your install-config.yaml
file and add the proxy settings. For example:
apiVersion: v1
baseDomain: my.domain.com
proxy:
httpProxy: http://<username>:<pswd>@<ip>:<port> (1)
httpsProxy: https://<username>:<pswd>@<ip>:<port> (2)
noProxy: ec2.<aws_region>.amazonaws.com,elasticloadbalancing.<aws_region>.amazonaws.com,s3.<aws_region>.amazonaws.com (3)
additionalTrustBundle: | (4)
-----BEGIN CERTIFICATE-----
<MY_TRUSTED_CA_CERT>
-----END CERTIFICATE-----
additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> (5)
1 | A proxy URL to use for creating HTTP connections outside the cluster. The
URL scheme must be http . |
2 | A proxy URL to use for creating HTTPS connections outside the cluster. |
3 | A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com , but not y.com . Use * to bypass the proxy for all destinations.
If you have added the Amazon EC2 ,Elastic Load Balancing , and S3 VPC endpoints to your VPC, you must add these endpoints to the noProxy field. |
4 | If provided, the installation program generates a config map that is named user-ca-bundle in
the openshift-config namespace that contains one or more additional CA
certificates that are required for proxying HTTPS connections. The Cluster Network
Operator then creates a trusted-ca-bundle config map that merges these contents
with the Fedora CoreOS (FCOS) trust bundle, and this config map is referenced in the trustedCA field of the Proxy object. The additionalTrustBundle field is required unless
the proxy’s identity certificate is signed by an authority from the FCOS trust
bundle. |
5 | Optional: The policy to determine the configuration of the Proxy object to reference the user-ca-bundle config map in the trustedCA field. The allowed values are Proxyonly and Always . Use Proxyonly to reference the user-ca-bundle config map only when http/https proxy is configured. Use Always to always reference the user-ca-bundle config map. The default value is Proxyonly . |
The installation program does not support the proxy |
If the installer times out, restart and then complete the deployment by using the
|
Save the file and reference it when installing OKD.
The installation program creates a cluster-wide proxy that is named cluster
that uses the proxy
settings in the provided install-config.yaml
file. If no proxy settings are
provided, a cluster
Proxy
object is still created, but it will have a nil
spec
.
Only the |
You can install OKD on a compatible cloud platform.
You can run the |
Configure an account with the cloud platform that hosts your cluster.
Obtain the OKD installation program and the pull secret for your cluster.
Verify the cloud provider account on your host has the correct permissions to deploy the cluster. An account with incorrect permissions causes the installation process to fail with an error message that displays the missing permissions.
Change to the directory that contains the installation program and initialize the cluster deployment:
$ ./openshift-install create cluster --dir <installation_directory> \ (1)
--log-level=info (2)
1 | For <installation_directory> , specify the
location of your customized ./install-config.yaml file. |
2 | To view different installation details, specify warn , debug , or
error instead of info . |
Optional: Remove or disable the AdministratorAccess
policy from the IAM
account that you used to install the cluster.
The elevated permissions provided by the |
When the cluster deployment completes successfully:
The terminal displays directions for accessing your cluster, including a link to the web console and credentials for the kubeadmin
user.
Credential information also outputs to <installation_directory>/.openshift_install.log
.
Do not delete the installation program or the files that the installation program creates. Both are required to delete the cluster. |
...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s
|
You can install the OpenShift CLI (oc
) to interact with
OKD
from a command-line interface. You can install oc
on Linux, Windows, or macOS.
If you installed an earlier version of |
You can install the OpenShift CLI (oc
) binary on Linux by using the following procedure.
Navigate to https://mirror.openshift.com/pub/openshift-v4/clients/oc/latest/ and choose the folder for your operating system and architecture.
Download oc.tar.gz
.
Unpack the archive:
$ tar xvf <file>
Place the oc
binary in a directory that is on your PATH
.
To check your PATH
, execute the following command:
$ echo $PATH
After you install the OpenShift CLI, it is available using the oc
command:
$ oc <command>
You can install the OpenShift CLI (oc
) binary on Windows by using the following procedure.
Navigate to https://mirror.openshift.com/pub/openshift-v4/clients/oc/latest/ and choose the folder for your operating system and architecture.
Download oc.zip
.
Unzip the archive with a ZIP program.
Move the oc
binary to a directory that is on your PATH
.
To check your PATH
, open the command prompt and execute the following command:
C:\> path
After you install the OpenShift CLI, it is available using the oc
command:
C:\> oc <command>
You can install the OpenShift CLI (oc
) binary on macOS by using the following procedure.
Navigate to https://mirror.openshift.com/pub/openshift-v4/clients/oc/latest/ and choose the folder for your operating system and architecture.
Download oc.tar.gz
.
Unpack and unzip the archive.
Move the oc
binary to a directory on your PATH.
To check your PATH
, open a terminal and execute the following command:
$ echo $PATH
After you install the OpenShift CLI, it is available using the oc
command:
$ oc <command>
You can log in to your cluster as a default system user by exporting the cluster kubeconfig
file.
The kubeconfig
file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server.
The file is specific to a cluster and is created during OKD installation.
You deployed an OKD cluster.
You installed the oc
CLI.
Export the kubeadmin
credentials:
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig (1)
1 | For <installation_directory> , specify the path to the directory that you stored
the installation files in. |
Verify you can run oc
commands successfully using the exported configuration:
$ oc whoami
system:admin
The kubeadmin
user exists by default after an OKD installation. You can log in to your cluster as the kubeadmin
user by using the OKD web console.
You have access to the installation host.
You completed a cluster installation and all cluster Operators are available.
Obtain the password for the kubeadmin
user from the kubeadmin-password
file on the installation host:
$ cat <installation_directory>/auth/kubeadmin-password
Alternatively, you can obtain the |
List the OKD web console route:
$ oc get routes -n openshift-console | grep 'console-openshift'
Alternatively, you can obtain the OKD route from the |
console console-openshift-console.apps.<cluster_name>.<base_domain> console https reencrypt/Redirect None
Navigate to the route detailed in the output of the preceding command in a web browser and log in as the kubeadmin
user.
See Accessing the web console for more details about accessing and understanding the OKD web console.
See About remote health monitoring for more information about the Telemetry service.
If necessary, you can opt out of remote health reporting.
If necessary, you can remove cloud provider credentials.