×

Prerequisites

Generating a key pair for cluster node SSH access

During an OKD installation, you can provide an SSH public key to the installation program. The key is passed to the Fedora CoreOS (FCOS) nodes through their Ignition config files and is used to authenticate SSH access to the nodes. The key is added to the ~/.ssh/authorized_keys list for the core user on each node, which enables password-less authentication.

After the key is passed to the nodes, you can use the key pair to SSH in to the FCOS nodes as the user core. To access the nodes through SSH, the private key identity must be managed by SSH for your local user.

If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you must provide the SSH public key during the installation process. The ./openshift-install gather command also requires the SSH public key to be in place on the cluster nodes.

Do not skip this procedure in production environments, where disaster recovery and debugging is required.

You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.

On clusters running Fedora CoreOS (FCOS), the SSH keys specified in the Ignition config files are written to the /home/core/.ssh/authorized_keys.d/core file. However, the Machine Config Operator manages SSH keys in the /home/core/.ssh/authorized_keys file and configures sshd to ignore the /home/core/.ssh/authorized_keys.d/core file. As a result, newly provisioned OKD nodes are not accessible using SSH until the Machine Config Operator reconciles the machine configs with the authorized_keys file. After you can access the nodes using SSH, you can delete the /home/core/.ssh/authorized_keys.d/core file.

Procedure
  1. If you do not have an existing SSH key pair on your local machine to use for authentication onto your cluster nodes, create one. For example, on a computer that uses a Linux operating system, run the following command:

    $ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> (1)
    1 Specify the path and file name, such as ~/.ssh/id_ed25519, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
  2. View the public SSH key:

    $ cat <path>/<file_name>.pub

    For example, run the following to view the ~/.ssh/id_ed25519.pub public key:

    $ cat ~/.ssh/id_ed25519.pub
  3. Add the SSH private key identity to the SSH agent for your local user, if it has not already been added. SSH agent management of the key is required for password-less SSH authentication onto your cluster nodes, or if you want to use the ./openshift-install gather command.

    On some distributions, default SSH private key identities such as ~/.ssh/id_rsa and ~/.ssh/id_dsa are managed automatically.

    1. If the ssh-agent process is not already running for your local user, start it as a background task:

      $ eval "$(ssh-agent -s)"
      Example output
      Agent pid 31874
  4. Add your SSH private key to the ssh-agent:

    $ ssh-add <path>/<file_name> (1)
    1 Specify the path and file name for your SSH private key, such as ~/.ssh/id_ed25519
    Example output
    Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
Next steps
  • When you install OKD, provide the SSH public key to the installation program.

Obtaining the installation program

Before you install OKD, download the installation file on the host you are using for installation.

Prerequisites
  • You have a computer that runs Linux or macOS, with 500 MB of local disk space.

Procedure
  1. Download installer from https://github.com/openshift/okd/releases

    The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.

    Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OKD uninstallation procedures for your specific cloud provider.

  2. Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:

    $ tar -xvf openshift-install-linux.tar.gz
  3. Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OKD components.

    Using a pull secret from the Red Hat OpenShift Cluster Manager is not required. You can use a pull secret for another private registry. Or, if you do not need the cluster to pull images from a private registry, you can use {"auths":{"fake":{"auth":"aWQ6cGFzcwo="}}} as the pull secret when prompted during the installation.

    • Red Hat Operators are not available.

    • The Telemetry and Insights operators do not send data to Red Hat.

    • Content from the Red Hat Container Catalog registry, such as image streams and Operators, are not available.

Creating the installation configuration file

You can customize the OKD cluster you install on Google Cloud Platform (GCP).

Prerequisites
  • Obtain the OKD installation program and the pull secret for your cluster.

  • Obtain service principal permissions at the subscription level.

Procedure
  1. Create the install-config.yaml file.

    1. Change to the directory that contains the installation program and run the following command:

      $ ./openshift-install create install-config --dir <installation_directory> (1)
      1 For <installation_directory>, specify the directory name to store the files that the installation program creates.

      When specifying the directory:

      • Verify that the directory has the execute permission. This permission is required to run Terraform binaries under the installation directory.

      • Use an empty directory. Some installation assets, such as bootstrap X.509 certificates, have short expiration intervals, therefore you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OKD version.

        Always delete the ~/.powervs directory to avoid reusing a stale configuration. Run the following command:

        $ rm -rf ~/.powervs
    2. At the prompts, provide the configuration details for your cloud:

      1. Optional: Select an SSH key to use to access your cluster machines.

        For production OKD clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

      2. Select gcp as the platform to target.

      3. If you have not configured the service account key for your GCP account on your computer, you must obtain it from GCP and paste the contents of the file or enter the absolute path to the file.

      4. Select the project ID to provision the cluster in. The default value is specified by the service account that you configured.

      5. Select the region to deploy the cluster to.

      6. Select the base domain to deploy the cluster to. The base domain corresponds to the public DNS zone that you created for your cluster.

      7. Enter a descriptive name for your cluster.

      8. Paste the pull secret from the Red Hat OpenShift Cluster Manager. This field is optional.

  2. Modify the install-config.yaml file. You can find more information about the available parameters in the "Installation configuration parameters" section.

    If you are installing a three-node cluster, be sure to set the compute.replicas parameter to 0. This ensures that cluster’s control planes are schedulable. For more information, see "Installing a three-node cluster on GCP".

  3. Back up the install-config.yaml file so that you can use it to install multiple clusters.

    The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.

Installation configuration parameters

Before you deploy an OKD cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.

After installation, you cannot modify these parameters in the install-config.yaml file.

Required configuration parameters

Required installation configuration parameters are described in the following table:

Table 1. Required parameters
Parameter Description Values

apiVersion

The API version for the install-config.yaml content. The current version is v1. The installation program may also support older API versions.

String

baseDomain

The base domain of your cloud provider. The base domain is used to create routes to your OKD cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.

A fully-qualified domain or subdomain name, such as example.com.

metadata

Kubernetes resource ObjectMeta, from which only the name parameter is consumed.

Object

metadata.name

The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.

String of lowercase letters, hyphens (-), and periods (.), such as dev.

platform

The configuration for the specific platform upon which to perform the installation: alibabacloud, aws, baremetal, azure, gcp, ibmcloud, nutanix, openstack, ovirt, powervs, vsphere, or {}. For additional information about platform.<platform> parameters, consult the table for your specific platform that follows.

Object

Network configuration parameters

You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.

Only IPv4 addresses are supported.

Globalnet is not supported with Red Hat OpenShift Data Foundation disaster recovery solutions. For regional disaster recovery scenarios, ensure that you use a nonoverlapping range of private IP addresses for the cluster and service networks in each cluster.

Table 2. Network parameters
Parameter Description Values

networking

The configuration for the cluster network.

Object

You cannot modify parameters specified by the networking object after installation.

networking.networkType

The Red Hat OpenShift Networking network plugin to install.

Either OpenShiftSDN or OVNKubernetes. The default value is OVNKubernetes.

networking.clusterNetwork

The IP address blocks for pods.

The default value is 10.128.0.0/14 with a host prefix of /23.

If you specify multiple IP address blocks, the blocks must not overlap.

An array of objects. For example:

networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23

networking.clusterNetwork.cidr

Required if you use networking.clusterNetwork. An IP address block.

An IPv4 network.

An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.

networking.clusterNetwork.hostPrefix

The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.

A subnet prefix.

The default value is 23.

networking.serviceNetwork

The IP address block for services. The default value is 172.30.0.0/16.

The OpenShift SDN and OVN-Kubernetes network plugins support only a single IP address block for the service network.

An array with an IP address block in CIDR format. For example:

networking:
  serviceNetwork:
   - 172.30.0.0/16

networking.machineNetwork

The IP address blocks for machines.

If you specify multiple IP address blocks, the blocks must not overlap.

An array of objects. For example:

networking:
  machineNetwork:
  - cidr: 10.0.0.0/16

networking.machineNetwork.cidr

Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt and IBM Power Virtual Server. For libvirt, the default value is 192.168.126.0/24. For IBM Power Virtual Server, the default value is 192.168.0.0/24.

An IP network block in CIDR notation.

For example, 10.0.0.0/16.

Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.

Optional configuration parameters

Optional installation configuration parameters are described in the following table:

Table 3. Optional parameters
Parameter Description Values

additionalTrustBundle

A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.

String

capabilities

Controls the installation of optional core cluster components. You can reduce the footprint of your OKD cluster by disabling optional components. For more information, see the "Cluster capabilities" page in Installing.

String array

capabilities.baselineCapabilitySet

Selects an initial set of optional capabilities to enable. Valid values are None, v4.11, v4.12 and vCurrent. The default value is vCurrent.

String

capabilities.additionalEnabledCapabilities

Extends the set of optional capabilities beyond what you specify in baselineCapabilitySet. You may specify multiple capabilities in this parameter.

String array

cpuPartitioningMode

Enables workload partitioning, which isolates OKD services, cluster management workloads, and infrastructure pods to run on a reserved set of CPUs. Workload partitioning can only be enabled during installation and cannot be disabled after installation. While this field enables workload partitioning, it does not configure workloads to use specific CPUs. For more information, see the Workload partitioning page in the Scalability and Performance section.

None or AllNodes. None is the default value.

compute

The configuration for the machines that comprise the compute nodes.

Array of MachinePool objects.

compute.architecture

Determines the instruction set architecture of the machines in the pool. Currently, clusters with varied architectures are not supported. All pools must specify the same architecture. Valid values are amd64 (the default).

String

compute: hyperthreading:

Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.

If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.

Enabled or Disabled

compute.name

Required if you use compute. The name of the machine pool.

worker

compute.platform

Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.

alibabacloud, aws, azure, gcp, ibmcloud, nutanix, openstack, ovirt, powervs, vsphere, or {}

compute.replicas

The number of compute machines, which are also known as worker machines, to provision.

A positive integer greater than or equal to 2. The default value is 3.

featureSet

Enables the cluster for a feature set. A feature set is a collection of OKD features that are not enabled by default. For more information about enabling a feature set during installation, see "Enabling features using feature gates".

String. The name of the feature set to enable, such as TechPreviewNoUpgrade.

controlPlane

The configuration for the machines that comprise the control plane.

Array of MachinePool objects.

controlPlane.architecture

Determines the instruction set architecture of the machines in the pool. Currently, clusters with varied architectures are not supported. All pools must specify the same architecture. Valid values are amd64.

String

controlPlane: hyperthreading:

Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.

If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.

Enabled or Disabled

controlPlane.name

Required if you use controlPlane. The name of the machine pool.

master

controlPlane.platform

Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.

alibabacloud, aws, azure, gcp, ibmcloud, nutanix, openstack, ovirt, powervs, vsphere, or {}

controlPlane.replicas

The number of control plane machines to provision.

The only supported value is 3, which is the default value.

credentialsMode

The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported. If you are installing on GCP into a shared virtual private cloud (VPC), credentialsMode must be set to Passthrough or Manual.

Not all CCO modes are supported for all cloud providers. For more information about CCO modes, see the Cloud Credential Operator entry in the Cluster Operators reference content.

If your AWS account has service control policies (SCP) enabled, you must configure the credentialsMode parameter to Mint, Passthrough or Manual.

Mint, Passthrough, Manual or an empty string ("").

imageContentSources

Sources and repositories for the release-image content.

Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.

imageContentSources.source

Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.

String

imageContentSources.mirrors

Specify one or more repositories that may also contain the same images.

Array of strings

publish

How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.

Internal or External. To deploy a private cluster, which cannot be accessed from the internet, set publish to Internal. The default value is External.

sshKey

The SSH key to authenticate access to your cluster machines.

For production OKD clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

For example, sshKey: ssh-ed25519 AAAA...

  1. Not all CCO modes are supported for all cloud providers. For more information about CCO modes, see the "Managing cloud provider credentials" entry in the Authentication and authorization content.

    If you are installing on GCP into a shared virtual private cloud (VPC), credentialsMode must be set to Passthrough or Manual.

    Setting this parameter to Manual enables alternatives to storing administrator-level secrets in the kube-system project, which require additional configuration steps. For more information, see "Alternatives to storing administrator-level secrets in the kube-system project".

Additional Google Cloud Platform (GCP) configuration parameters

Additional GCP configuration parameters are described in the following table:

Table 4. Additional GCP parameters
Parameter Description Values

platform.gcp.network

The name of the existing Virtual Private Cloud (VPC) where you want to deploy your cluster. If you want to deploy your cluster into a shared VPC, you must set platform.gcp.networkProjectID with the name of the GCP project that contains the shared VPC.

String.

platform.gcp.networkProjectID

Optional. The name of the GCP project that contains the shared VPC where you want to deploy your cluster.

String.

platform.gcp.projectID

The name of the GCP project where the installation program installs the cluster.

String.

platform.gcp.region

The name of the GCP region that hosts your cluster.

Any valid region name, such as us-central1.

platform.gcp.controlPlaneSubnet

The name of the existing subnet where you want to deploy your control plane machines.

The subnet name.

platform.gcp.computeSubnet

The name of the existing subnet where you want to deploy your compute machines.

The subnet name.

platform.gcp.licenses

A list of license URLs that must be applied to the compute images.

The licenses parameter is a deprecated field and nested virtualization is enabled by default. It is not recommended to use this field.

Any license available with the license API, such as the license to enable nested virtualization. You cannot use this parameter with a mechanism that generates pre-built images. Using a license URL forces the installation program to copy the source image before use.

platform.gcp.defaultMachinePlatform.zones

The availability zones where the installation program creates machines.

A list of valid GCP availability zones, such as us-central1-a, in a YAML sequence.

platform.gcp.defaultMachinePlatform.osDisk.diskSizeGB

The size of the disk in gigabytes (GB).

Any size between 16 GB and 65536 GB.

platform.gcp.defaultMachinePlatform.osDisk.diskType

Either the default pd-ssd or the pd-standard disk type. The control plane nodes must be the pd-ssd disk type. Compute nodes can be either type.

platform.gcp.defaultMachinePlatform.osImage.project

Optional. By default, the installation program downloads and installs the FCOS image that is used to boot control plane and compute machines. You can override the default behavior by specifying the location of a custom FCOS image for the installation program to use for both types of machines.

String. The name of GCP project where the image is located.

platform.gcp.defaultMachinePlatform.osImage.name

The name of the custom FCOS image for the installation program to use to boot control plane and compute machines. If you use platform.gcp.defaultMachinePlatform.osImage.project, this field is required.

String. The name of the RHCOS image.

platform.gcp.defaultMachinePlatform.tags

Optional. Additional network tags to add to the control plane and compute machines.

One or more strings, for example network-tag1.

platform.gcp.defaultMachinePlatform.type

The GCP machine type for control plane and compute machines.

The GCP machine type, for example n1-standard-4.

platform.gcp.defaultMachinePlatform.osDisk.encryptionKey.kmsKey.name

The name of the customer managed encryption key to be used for machine disk encryption.

The encryption key name.

platform.gcp.defaultMachinePlatform.osDisk.encryptionKey.kmsKey.keyRing

The name of the Key Management Service (KMS) key ring to which the KMS key belongs.

The KMS key ring name.

platform.gcp.defaultMachinePlatform.osDisk.encryptionKey.kmsKey.location

The GCP location in which the KMS key ring exists.

The GCP location.

platform.gcp.defaultMachinePlatform.osDisk.encryptionKey.kmsKey.projectID

The ID of the project in which the KMS key ring exists. This value defaults to the value of the platform.gcp.projectID parameter if it is not set.

The GCP project ID.

platform.gcp.defaultMachinePlatform.osDisk.encryptionKey.kmsKeyServiceAccount

The GCP service account used for the encryption request for control plane and compute machines. If absent, the Compute Engine default service account is used. For more information about GCP service accounts, see Google’s documentation on service accounts.

The GCP service account email, for example <service_account_name>@<project_id>.iam.gserviceaccount.com.

platform.gcp.defaultMachinePlatform.secureBoot

Whether to enable Shielded VM secure boot for all machines in the cluster. Shielded VMs have additional security protocols such as secure boot, firmware and integrity monitoring, and rootkit protection. For more information on Shielded VMs, see Google’s documentation on Shielded VMs.

Enabled or Disabled. The default value is Disabled.

platform.gcp.defaultMachinePlatform.confidentialCompute

Whether to use Confidential VMs for all machines in the cluster. Confidential VMs provide encryption for data during processing. For more information on Confidential computing, see Google’s documentation on Confidential computing.

Enabled or Disabled. The default value is Disabled.

platform.gcp.defaultMachinePlatform.onHostMaintenance

Specifies the behavior of all VMs during a host maintenance event, such as a software or hardware update. For Confidential VMs, this parameter must be set to Terminate. Confidential VMs do not support live VM migration.

Terminate or Migrate. The default value is Migrate.

controlPlane.platform.gcp.osDisk.encryptionKey.kmsKey.name

The name of the customer managed encryption key to be used for control plane machine disk encryption.

The encryption key name.

controlPlane.platform.gcp.osDisk.encryptionKey.kmsKey.keyRing

For control plane machines, the name of the KMS key ring to which the KMS key belongs.

The KMS key ring name.

controlPlane.platform.gcp.osDisk.encryptionKey.kmsKey.location

For control plane machines, the GCP location in which the key ring exists. For more information about KMS locations, see Google’s documentation on Cloud KMS locations.

The GCP location for the key ring.

controlPlane.platform.gcp.osDisk.encryptionKey.kmsKey.projectID

For control plane machines, the ID of the project in which the KMS key ring exists. This value defaults to the VM project ID if not set.

The GCP project ID.

controlPlane.platform.gcp.osDisk.encryptionKey.kmsKeyServiceAccount

The GCP service account used for the encryption request for control plane machines. If absent, the Compute Engine default service account is used. For more information about GCP service accounts, see Google’s documentation on service accounts.

The GCP service account email, for example <service_account_name>@<project_id>.iam.gserviceaccount.com.

controlPlane.platform.gcp.osDisk.diskSizeGB

The size of the disk in gigabytes (GB). This value applies to control plane machines.

Any integer between 16 and 65536.

controlPlane.platform.gcp.osDisk.diskType

The GCP disk type for control plane machines.

Control plane machines must use the pd-ssd disk type, which is the default.

controlPlane.platform.gcp.osImage.project

Optional. By default, the installation program downloads and installs the Fedora CoreOS (FCOS) image that is used to boot control plane machines. You can override the default behavior by specifying the location of a custom FCOS image for the installation program to use for control plane machines only.

String. The name of GCP project where the image is located.

controlPlane.platform.gcp.osImage.name

The name of the custom FCOS image for the installation program to use to boot control plane machines. If you use controlPlane.platform.gcp.osImage.project, this field is required.

String. The name of the FCOS image.

controlPlane.platform.gcp.tags

Optional. Additional network tags to add to the control plane machines. If set, this parameter overrides the platform.gcp.defaultMachinePlatform.tags parameter for control plane machines.

One or more strings, for example control-plane-tag1.

controlPlane.platform.gcp.type

The GCP machine type for control plane machines. If set, this parameter overrides the platform.gcp.defaultMachinePlatform.type parameter.

The GCP machine type, for example n1-standard-4.

controlPlane.platform.gcp.zones

The availability zones where the installation program creates control plane machines.

A list of valid GCP availability zones, such as us-central1-a, in a YAML sequence.

controlPlane.platform.gcp.secureBoot

Whether to enable Shielded VM secure boot for control plane machines. Shielded VMs have additional security protocols such as secure boot, firmware and integrity monitoring, and rootkit protection. For more information on Shielded VMs, see Google’s documentation on Shielded VMs.

Enabled or Disabled. The default value is Disabled.

controlPlane.platform.gcp.confidentialCompute

Whether to enable Confidential VMs for control plane machines. Confidential VMs provide encryption for data while it is being processed. For more information on Confidential VMs, see Google’s documentation on Confidential Computing.

Enabled or Disabled. The default value is Disabled.

controlPlane.platform.gcp.onHostMaintenance

Specifies the behavior of control plane VMs during a host maintenance event, such as a software or hardware update. For Confidential VMs, this parameter must be set to Terminate. Confidential VMs do not support live VM migration.

Terminate or Migrate. The default value is Migrate.

compute.platform.gcp.osDisk.encryptionKey.kmsKey.name

The name of the customer managed encryption key to be used for compute machine disk encryption.

The encryption key name.

compute.platform.gcp.osDisk.encryptionKey.kmsKey.keyRing

For compute machines, the name of the KMS key ring to which the KMS key belongs.

The KMS key ring name.

compute.platform.gcp.osDisk.encryptionKey.kmsKey.location

For compute machines, the GCP location in which the key ring exists. For more information about KMS locations, see Google’s documentation on Cloud KMS locations.

The GCP location for the key ring.

compute.platform.gcp.osDisk.encryptionKey.kmsKey.projectID

For compute machines, the ID of the project in which the KMS key ring exists. This value defaults to the VM project ID if not set.

The GCP project ID.

compute.platform.gcp.osDisk.encryptionKey.kmsKeyServiceAccount

The GCP service account used for the encryption request for compute machines. If this value is not set, the Compute Engine default service account is used. For more information about GCP service accounts, see Google’s documentation on service accounts.

The GCP service account email, for example <service_account_name>@<project_id>.iam.gserviceaccount.com.

compute.platform.gcp.osDisk.diskSizeGB

The size of the disk in gigabytes (GB). This value applies to compute machines.

Any integer between 16 and 65536.

compute.platform.gcp.osDisk.diskType

The GCP disk type for compute machines.

Either the default pd-ssd or the pd-standard disk type.

compute.platform.gcp.osImage.project

Optional. By default, the installation program downloads and installs the FCOS image that is used to boot compute machines. You can override the default behavior by specifying the location of a custom FCOS image for the installation program to use for compute machines only.

String. The name of GCP project where the image is located.

compute.platform.gcp.osImage.name

The name of the custom FCOS image for the installation program to use to boot compute machines. If you use compute.platform.gcp.osImage.project, this field is required.

String. The name of the FCOS image.

compute.platform.gcp.tags

Optional. Additional network tags to add to the compute machines. If set, this parameter overrides the platform.gcp.defaultMachinePlatform.tags parameter for compute machines.

One or more strings, for example compute-network-tag1.

compute.platform.gcp.type

The GCP machine type for compute machines. If set, this parameter overrides the platform.gcp.defaultMachinePlatform.type parameter.

The GCP machine type, for example n1-standard-4.

compute.platform.gcp.zones

The availability zones where the installation program creates compute machines.

A list of valid GCP availability zones, such as us-central1-a, in a YAML sequence.

compute.platform.gcp.secureBoot

Whether to enable Shielded VM secure boot for compute machines. Shielded VMs have additional security protocols such as secure boot, firmware and integrity monitoring, and rootkit protection. For more information on Shielded VMs, see Google’s documentation on Shielded VMs.

Enabled or Disabled. The default value is Disabled.

compute.platform.gcp.confidentialCompute

Whether to enable Confidential VMs for compute machines. Confidential VMs provide encryption for data while it is being processed. For more information on Confidential VMs, see Google’s documentation on Confidential Computing.

Enabled or Disabled. The default value is Disabled.

compute.platform.gcp.onHostMaintenance

Specifies the behavior of compute VMs during a host maintenance event, such as a software or hardware update. For Confidential VMs, this parameter must be set to Terminate. Confidential VMs do not support live VM migration.

Terminate or Migrate. The default value is Migrate.

Minimum resource requirements for cluster installation

Each cluster machine must meet the following minimum requirements:

Table 5. Minimum resource requirements
Machine Operating System vCPU [1] Virtual RAM Storage Input/Output Per Second (IOPS)[2]

Bootstrap

FCOS

4

16 GB

100 GB

300

Control plane

FCOS

4

16 GB

100 GB

300

Compute

FCOS

2

8 GB

100 GB

300

  1. One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or Hyper-Threading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.

  2. OKD and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.

  3. As with all user-provisioned installations, if you choose to use Fedora compute machines in your cluster, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks. Use of Fedora 7 compute machines is deprecated and has been removed in OKD 4.10 and later.

As of OKD version 4.13, RHCOS is based on RHEL version 9.2, which updates the micro-architecture requirements. The following list contains the minimum instruction set architectures (ISA) that each architecture requires:

  • x86-64 architecture requires x86-64-v2 ISA

  • ARM64 architecture requires ARMv8.0-A ISA

  • IBM Power architecture requires Power 9 ISA

  • s390x architecture requires z14 ISA

For more information, see RHEL Architectures.

If an instance type for your platform meets the minimum requirements for cluster machines, it is supported to use in OKD.

Additional resources

Tested instance types for GCP

The following Google Cloud Platform instance types have been tested with OKD.

Machine series
  • A2

  • A3

  • C2

  • C2D

  • C3

  • C3D

  • C4

  • E2

  • M1

  • N1

  • N2

  • N2D

  • N4

  • Tau T2D

Using custom machine types

Using a custom machine type to install a OKD cluster is supported.

Consider the following when using a custom machine type:

  • Similar to predefined instance types, custom machine types must meet the minimum resource requirements for control plane and compute machines. For more information, see "Minimum resource requirements for cluster installation".

  • The name of the custom machine type must adhere to the following syntax:

    custom-<number_of_cpus>-<amount_of_memory_in_mb>

    For example, custom-6-20480.

As part of the installation process, you specify the custom machine type in the install-config.yaml file.

Sample install-config.yaml file with a custom machine type
compute:
- architecture: amd64
  hyperthreading: Enabled
  name: worker
  platform:
    gcp:
      type: custom-6-20480
  replicas: 2
controlPlane:
  architecture: amd64
  hyperthreading: Enabled
  name: master
  platform:
    gcp:
      type: custom-6-20480
  replicas: 3

Enabling Shielded VMs

You can use Shielded VMs when installing your cluster. Shielded VMs have extra security features including secure boot, firmware and integrity monitoring, and rootkit detection. For more information, see Google’s documentation on Shielded VMs.

Prerequisites
  • You have created an install-config.yaml file.

Procedure
  • Use a text editor to edit the install-config.yaml file prior to deploying your cluster and add one of the following stanzas:

    1. To use shielded VMs for only control plane machines:

      controlPlane:
        platform:
          gcp:
             secureBoot: Enabled
    2. To use shielded VMs for only compute machines:

      compute:
      - platform:
          gcp:
             secureBoot: Enabled
    3. To use shielded VMs for all machines:

      platform:
        gcp:
          defaultMachinePlatform:
             secureBoot: Enabled

Enabling Confidential VMs

You can use Confidential VMs when installing your cluster. Confidential VMs encrypt data while it is being processed. For more information, see Google’s documentation on Confidential Computing. You can enable Confidential VMs and Shielded VMs at the same time, although they are not dependent on each other.

Confidential Computing is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

Due to a known issue in OKD 4.13.3 and earlier versions, you cannot use persistent volume storage on a cluster with Confidential VMs on Google Cloud Platform (GCP). This issue was resolved in OKD 4.13.4. For more information, see OCPBUGS-11768.

Prerequisites
  • You have created an install-config.yaml file.

Procedure
  • Use a text editor to edit the install-config.yaml file prior to deploying your cluster and add one of the following stanzas:

    1. To use confidential VMs for only control plane machines:

      controlPlane:
        platform:
          gcp:
             confidentialCompute: Enabled (1)
             type: n2d-standard-8 (2)
             onHostMaintenance: Terminate (3)
      1 Enable confidential VMs.
      2 Specify a machine type that supports Confidential VMs. Confidential VMs require the N2D or C2D series of machine types. For more information on supported machine types, see Supported operating systems and machine types.
      3 Specify the behavior of the VM during a host maintenance event, such as a hardware or software update. For a machine that uses Confidential VM, this value must be set to Terminate, which stops the VM. Confidential VMs do not support live VM migration.
    2. To use confidential VMs for only compute machines:

      compute:
      - platform:
          gcp:
             confidentialCompute: Enabled
             type: n2d-standard-8
             onHostMaintenance: Terminate
    3. To use confidential VMs for all machines:

      platform:
        gcp:
          defaultMachinePlatform:
             confidentialCompute: Enabled
             type: n2d-standard-8
             onHostMaintenance: Terminate

Sample customized install-config.yaml file for GCP

You can customize the install-config.yaml file to specify more details about your OKD cluster’s platform or modify the values of the required parameters.

This sample YAML file is provided for reference only. You must obtain your install-config.yaml file by using the installation program and modify it.

apiVersion: v1
baseDomain: example.com (1)
controlPlane:  (2) (3)
  hyperthreading: Enabled (4)
  name: master
  platform:
    gcp:
      type: n2-standard-4
      zones:
      - us-central1-a
      - us-central1-c
      osDisk:
        diskType: pd-ssd
        diskSizeGB: 1024
        encryptionKey: (5)
          kmsKey:
            name: worker-key
            keyRing: test-machine-keys
            location: global
            projectID: project-id
      tags: (6)
      - control-plane-tag1
      - control-plane-tag2
      osImage: (7)
        project: example-project-name
        name: example-image-name
  replicas: 3
compute:  (2) (3)
- hyperthreading: Enabled (4)
  name: worker
  platform:
    gcp:
      type: n2-standard-4
      zones:
      - us-central1-a
      - us-central1-c
      osDisk:
        diskType: pd-standard
        diskSizeGB: 128
        encryptionKey: (5)
          kmsKey:
            name: worker-key
            keyRing: test-machine-keys
            location: global
            projectID: project-id
      tags: (6)
        - compute-tag1
        - compute-tag2
      osImage: (7)
        project: example-project-name
        name: example-image-name
  replicas: 3
metadata:
  name: test-cluster (1)
networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23
  machineNetwork:
  - cidr: 10.0.0.0/16
  networkType: OVNKubernetes (8)
  serviceNetwork:
  - 172.30.0.0/16
platform:
  gcp:
    projectID: openshift-production (1)
    region: us-central1 (1)
    defaultMachinePlatform:
      tags: (6)
      - global-tag1
      - global-tag2
      osImage: (7)
        project: example-project-name
        name: example-image-name
pullSecret: '{"auths": ...}' (1)
sshKey: ssh-ed25519 AAAA... (9)
1 Required. The installation program prompts you for this value.
2 If you do not provide these parameters and values, the installation program provides the default value.
3 The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
4 Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.

If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger machine types, such as n1-standard-8, for your machines if you disable simultaneous multithreading.

5 Optional: The custom encryption key section to encrypt both virtual machines and persistent volumes. Your default compute service account must have the permissions granted to use your KMS key and have the correct IAM role assigned. The default service account name follows the service-<project_number>@compute-system.iam.gserviceaccount.com pattern. For more information about granting the correct permissions for your service account, see "Machine management" → "Creating compute machine sets" → "Creating a compute machine set on GCP".
6 Optional: A set of network tags to apply to the control plane or compute machine sets. The platform.gcp.defaultMachinePlatform.tags parameter will apply to both control plane and compute machines. If the compute.platform.gcp.tags or controlPlane.platform.gcp.tags parameters are set, they override the platform.gcp.defaultMachinePlatform.tags parameter.
7 Optional: A custom Fedora CoreOS (FCOS) image for the installation program to use to boot control plane and compute machines. The project and name parameters under platform.gcp.defaultMachinePlatform.osImage apply to both control plane and compute machines. If the project and name parameters under controlPlane.platform.gcp.osImage or compute.platform.gcp.osImage are set, they override the platform.gcp.defaultMachinePlatform.osImage parameters.
8 The cluster network plugin to install. The supported values are OVNKubernetes and OpenShiftSDN. The default value is OVNKubernetes.
9 You can optionally provide the sshKey value that you use to access the machines in your cluster.

For production OKD clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

Configuring the cluster-wide proxy during installation

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS proxy available. You can configure a new OKD cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.

Prerequisites
  • You have an existing install-config.yaml file.

  • You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.

    The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.

    For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and OpenStack, the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).

Procedure
  1. Edit your install-config.yaml file and add the proxy settings. For example:

    apiVersion: v1
    baseDomain: my.domain.com
    proxy:
      httpProxy: http://<username>:<pswd>@<ip>:<port> (1)
      httpsProxy: https://<username>:<pswd>@<ip>:<port> (2)
      noProxy: example.com (3)
    additionalTrustBundle: | (4)
        -----BEGIN CERTIFICATE-----
        <MY_TRUSTED_CA_CERT>
        -----END CERTIFICATE-----
    additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> (5)
    1 A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
    2 A proxy URL to use for creating HTTPS connections outside the cluster.
    3 A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
    4 If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace that contains one or more additional CA certificates that are required for proxying HTTPS connections. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges these contents with the Fedora CoreOS (FCOS) trust bundle, and this config map is referenced in the trustedCA field of the Proxy object. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the FCOS trust bundle.
    5 Optional: The policy to determine the configuration of the Proxy object to reference the user-ca-bundle config map in the trustedCA field. The allowed values are Proxyonly and Always. Use Proxyonly to reference the user-ca-bundle config map only when http/https proxy is configured. Use Always to always reference the user-ca-bundle config map. The default value is Proxyonly.

    The installation program does not support the proxy readinessEndpoints field.

    If the installer times out, restart and then complete the deployment by using the wait-for command of the installer. For example:

    $ ./openshift-install wait-for install-complete --log-level debug
  2. Save the file and reference it when installing OKD.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.

Only the Proxy object named cluster is supported, and no additional proxies can be created.

Using the GCP Marketplace offering

Using the GCP Marketplace offering lets you deploy an OKD cluster, which is billed on pay-per-use basis (hourly, per core) through GCP, while still being supported directly by Red Hat.

By default, the installation program downloads and installs the Fedora CoreOS (FCOS) image that is used to deploy compute machines. To deploy an OKD cluster using an FCOS image from the GCP Marketplace, override the default behavior by modifying the install-config.yaml file to reference the location of GCP Marketplace offer.

Prerequisites
  • You have an existing install-config.yaml file.

Procedure
  1. Edit the compute.platform.gcp.osImage parameters to specify the location of the GCP Marketplace image:

    • Set the project parameter to redhat-marketplace-public.

    • Set the name parameter to one of the following offerings:

      OKD

      redhat-coreos-ocp-413-x86-64-202305021736

      OpenShift Platform Plus

      redhat-coreos-opp-413-x86-64-202305021736

      OpenShift Kubernetes Engine

      redhat-coreos-oke-413-x86-64-202305021736

  2. Save the file and reference it when deploying the cluster.

Sample install-config.yaml file that specifies a GCP Marketplace image for compute machines
apiVersion: v1
baseDomain: example.com
controlPlane:
# ...
compute:
  platform:
    gcp:
      osImage:
        project: redhat-marketplace-public
        name: redhat-coreos-ocp-413-x86-64-202305021736
# ...

Deploying the cluster

You can install OKD on a compatible cloud platform.

You can run the create cluster command of the installation program only once, during initial installation.

Prerequisites
  • Configure an account with the cloud platform that hosts your cluster.

  • Obtain the OKD installation program and the pull secret for your cluster.

  • Verify the cloud provider account on your host has the correct permissions to deploy the cluster. An account with incorrect permissions causes the installation process to fail with an error message that displays the missing permissions.

Procedure
  1. Remove any existing GCP credentials that do not use the service account key for the GCP account that you configured for your cluster and that are stored in the following locations:

    • The GOOGLE_CREDENTIALS, GOOGLE_CLOUD_KEYFILE_JSON, or GCLOUD_KEYFILE_JSON environment variables

    • The ~/.gcp/osServiceAccount.json file

    • The gcloud cli default credentials

  2. Change to the directory that contains the installation program and initialize the cluster deployment:

    $ ./openshift-install create cluster --dir <installation_directory> \ (1)
        --log-level=info (2)
    
    1 For <installation_directory>, specify the location of your customized ./install-config.yaml file.
    2 To view different installation details, specify warn, debug, or error instead of info.
  3. Optional: You can reduce the number of permissions for the service account that you used to install the cluster.

    • If you assigned the Owner role to your service account, you can remove that role and replace it with the Viewer role.

    • If you included the Service Account Key Admin role, you can remove it.

Verification

When the cluster deployment completes successfully:

  • The terminal displays directions for accessing your cluster, including a link to the web console and credentials for the kubeadmin user.

  • Credential information also outputs to <installation_directory>/.openshift_install.log.

Do not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.

Example output
...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s
  • The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.

  • It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.

Installing the OpenShift CLI by downloading the binary

You can install the OpenShift CLI (oc) to interact with OKD from a command-line interface. You can install oc on Linux, Windows, or macOS.

If you installed an earlier version of oc, you cannot use it to complete all of the commands in OKD 4.13. Download and install the new version of oc.

Installing the OpenShift CLI on Linux

You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.

Procedure
  1. Navigate to https://mirror.openshift.com/pub/openshift-v4/clients/oc/latest/ and choose the folder for your operating system and architecture.

  2. Download oc.tar.gz.

  3. Unpack the archive:

    $ tar xvf <file>
  4. Place the oc binary in a directory that is on your PATH.

    To check your PATH, execute the following command:

    $ echo $PATH
Verification
  • After you install the OpenShift CLI, it is available using the oc command:

    $ oc <command>

Installing the OpenShift CLI on Windows

You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.

Procedure
  1. Navigate to https://mirror.openshift.com/pub/openshift-v4/clients/oc/latest/ and choose the folder for your operating system and architecture.

  2. Download oc.zip.

  3. Unzip the archive with a ZIP program.

  4. Move the oc binary to a directory that is on your PATH.

    To check your PATH, open the command prompt and execute the following command:

    C:\> path
Verification
  • After you install the OpenShift CLI, it is available using the oc command:

    C:\> oc <command>

Installing the OpenShift CLI on macOS

You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.

Procedure
  1. Navigate to https://mirror.openshift.com/pub/openshift-v4/clients/oc/latest/ and choose the folder for your operating system and architecture.

  2. Download oc.tar.gz.

  3. Unpack and unzip the archive.

  4. Move the oc binary to a directory on your PATH.

    To check your PATH, open a terminal and execute the following command:

    $ echo $PATH
Verification
  • After you install the OpenShift CLI, it is available using the oc command:

    $ oc <command>

Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OKD installation.

Prerequisites
  • You deployed an OKD cluster.

  • You installed the oc CLI.

Procedure
  1. Export the kubeadmin credentials:

    $ export KUBECONFIG=<installation_directory>/auth/kubeconfig (1)
    1 For <installation_directory>, specify the path to the directory that you stored the installation files in.
  2. Verify you can run oc commands successfully using the exported configuration:

    $ oc whoami
    Example output
    system:admin
Additional resources
Additional resources

Next steps