$ aws ec2 describe-images --region <aws_region_name> --filters "Name=name,Values=Windows_Server-2022*English*Core*Base*" "Name=is-public,Values=true" --query "reverse(sort_by(Images, &CreationDate))[*].{name: Name, id: ImageId}" --output table
You can create a Windows MachineSet
object to serve a specific purpose in your OKD cluster on Amazon Web Services (AWS). For example, you might create infrastructure Windows machine sets and related machines so that you can move supporting Windows workloads to the new Windows machines.
You installed the Windows Machine Config Operator (WMCO) using Operator Lifecycle Manager (OLM).
You are using a supported Windows Server as the operating system image.
Use one of the following aws
commands, as appropriate for your Windows Server release, to query valid AMI images:
$ aws ec2 describe-images --region <aws_region_name> --filters "Name=name,Values=Windows_Server-2022*English*Core*Base*" "Name=is-public,Values=true" --query "reverse(sort_by(Images, &CreationDate))[*].{name: Name, id: ImageId}" --output table
$ aws ec2 describe-images --region <aws_region_name> --filters "Name=name,Values=Windows_Server-2019*English*Core*Base*" "Name=is-public,Values=true" --query "reverse(sort_by(Images, &CreationDate))[*].{name: Name, id: ImageId}" --output table
where:
Specifies the name of your AWS region.
The Machine API is a combination of primary resources that are based on the upstream Cluster API project and custom OKD resources.
For OKD 4.16 clusters, the Machine API performs all node host provisioning management actions after the cluster installation finishes. Because of this system, OKD 4.16 offers an elastic, dynamic provisioning method on top of public or private cloud infrastructure.
The two primary resources are:
A fundamental unit that describes the host for a node. A machine has a providerSpec
specification, which describes the types of compute nodes that are offered for different cloud platforms. For example, a machine type for a compute node might define a specific machine type and required metadata.
MachineSet
resources are groups of compute machines. Compute machine sets are to compute machines as replica sets are to pods. If you need more compute machines or must scale them down, you change the replicas
field on the MachineSet
resource to meet your compute need.
Control plane machines cannot be managed by compute machine sets. Control plane machine sets provide management capabilities for supported control plane machines that are similar to what compute machine sets provide for compute machines. For more information, see “Managing control plane machines". |
The following custom resources add more capabilities to your cluster:
The MachineAutoscaler
resource automatically scales compute machines in a cloud. You can set the minimum and maximum scaling boundaries for nodes in a specified compute machine set, and the machine autoscaler maintains that range of nodes.
The MachineAutoscaler
object takes effect after a ClusterAutoscaler
object exists. Both ClusterAutoscaler
and MachineAutoscaler
resources are made available by the ClusterAutoscalerOperator
object.
This resource is based on the upstream cluster autoscaler project. In the OKD implementation, it is integrated with the Machine API by extending the compute machine set API. You can use the cluster autoscaler to manage your cluster in the following ways:
Set cluster-wide scaling limits for resources such as cores, nodes, memory, and GPU
Set the priority so that the cluster prioritizes pods and new nodes are not brought online for less important pods
Set the scaling policy so that you can scale up nodes but not scale them down
The MachineHealthCheck
resource detects when a machine is unhealthy, deletes it, and, on supported platforms, makes a new machine.
In OKD version 3.11, you could not roll out a multi-zone architecture easily because the cluster did not manage machine provisioning. Beginning with OKD version 4.1, this process is easier. Each compute machine set is scoped to a single zone, so the installation program sends out compute machine sets across availability zones on your behalf. And then because your compute is dynamic, and in the face of a zone failure, you always have a zone for when you must rebalance your machines. In global Azure regions that do not have multiple availability zones, you can use availability sets to ensure high availability. The autoscaler provides best-effort balancing over the life of a cluster.
This sample YAML defines a Windows MachineSet
object running on Amazon Web Services (AWS) that the Windows Machine Config Operator (WMCO) can react upon.
apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
labels:
machine.openshift.io/cluster-api-cluster: <infrastructure_id> (1)
name: <infrastructure_id>-windows-worker-<zone> (2)
namespace: openshift-machine-api
spec:
replicas: 1
selector:
matchLabels:
machine.openshift.io/cluster-api-cluster: <infrastructure_id> (1)
machine.openshift.io/cluster-api-machineset: <infrastructure_id>-windows-worker-<zone> (2)
template:
metadata:
labels:
machine.openshift.io/cluster-api-cluster: <infrastructure_id> (1)
machine.openshift.io/cluster-api-machine-role: worker
machine.openshift.io/cluster-api-machine-type: worker
machine.openshift.io/cluster-api-machineset: <infrastructure_id>-windows-worker-<zone> (2)
machine.openshift.io/os-id: Windows (3)
spec:
metadata:
labels:
node-role.kubernetes.io/worker: "" (4)
providerSpec:
value:
ami:
id: <windows_container_ami> (5)
apiVersion: awsproviderconfig.openshift.io/v1beta1
blockDevices:
- ebs:
iops: 0
volumeSize: 120
volumeType: gp2
credentialsSecret:
name: aws-cloud-credentials
deviceIndex: 0
iamInstanceProfile:
id: <infrastructure_id>-worker-profile (1)
instanceType: m5a.large
kind: AWSMachineProviderConfig
placement:
availabilityZone: <zone> (6)
region: <region> (7)
securityGroups:
- filters:
- name: tag:Name
values:
- <infrastructure_id>-worker-sg (1)
subnet:
filters:
- name: tag:Name
values:
- <infrastructure_id>-private-<zone> (1)
tags:
- name: kubernetes.io/cluster/<infrastructure_id> (1)
value: owned
userDataSecret:
name: windows-user-data (8)
namespace: openshift-machine-api
1 | Specify the infrastructure ID that is based on the cluster ID that you set when you provisioned the cluster. You can obtain the infrastructure ID by running the following command:
|
2 | Specify the infrastructure ID, worker label, and zone. |
3 | Configure the compute machine set as a Windows machine. |
4 | Configure the Windows node as a compute machine. |
5 | Specify the AMI ID of a supported Windows image with a container runtime installed. |
6 | Specify the AWS zone, like us-east-1a . |
7 | Specify the AWS region, like us-east-1 . |
8 | Created by the WMCO when it is configuring the first Windows machine. After that, the windows-user-data is available for all subsequent compute machine sets to consume. |
In addition to the compute machine sets created by the installation program, you can create your own to dynamically manage the machine compute resources for specific workloads of your choice.
Deploy an OKD cluster.
Install the OpenShift CLI (oc
).
Log in to oc
as a user with cluster-admin
permission.
In disconnected environments, the image specified in the MachineSet
custom resource (CR) must have the OpenSSH server v0.0.1.0 installed.
Create a new YAML file that contains the compute machine set custom resource (CR) sample and is named <file_name>.yaml
.
Ensure that you set the <clusterID>
and <role>
parameter values.
Optional: If you are not sure which value to set for a specific field, you can check an existing compute machine set from your cluster.
To list the compute machine sets in your cluster, run the following command:
$ oc get machinesets -n openshift-machine-api
NAME DESIRED CURRENT READY AVAILABLE AGE
agl030519-vplxk-worker-us-east-1a 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1b 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1c 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1d 0 0 55m
agl030519-vplxk-worker-us-east-1e 0 0 55m
agl030519-vplxk-worker-us-east-1f 0 0 55m
To view values of a specific compute machine set custom resource (CR), run the following command:
$ oc get machineset <machineset_name> \
-n openshift-machine-api -o yaml
apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
labels:
machine.openshift.io/cluster-api-cluster: <infrastructure_id> (1)
name: <infrastructure_id>-<role> (2)
namespace: openshift-machine-api
spec:
replicas: 1
selector:
matchLabels:
machine.openshift.io/cluster-api-cluster: <infrastructure_id>
machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>
template:
metadata:
labels:
machine.openshift.io/cluster-api-cluster: <infrastructure_id>
machine.openshift.io/cluster-api-machine-role: <role>
machine.openshift.io/cluster-api-machine-type: <role>
machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>
spec:
providerSpec: (3)
...
1 | The cluster infrastructure ID. | ||
2 | A default node label.
|
||
3 | The values in the <providerSpec> section of the compute machine set CR are platform-specific. For more information about <providerSpec> parameters in the CR, see the sample compute machine set CR configuration for your provider. |
Create a MachineSet
CR by running the following command:
$ oc create -f <file_name>.yaml
View the list of compute machine sets by running the following command:
$ oc get machineset -n openshift-machine-api
NAME DESIRED CURRENT READY AVAILABLE AGE
agl030519-vplxk-windows-worker-us-east-1a 1 1 1 1 11m
agl030519-vplxk-worker-us-east-1a 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1b 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1c 1 1 1 1 55m
agl030519-vplxk-worker-us-east-1d 0 0 55m
agl030519-vplxk-worker-us-east-1e 0 0 55m
agl030519-vplxk-worker-us-east-1f 0 0 55m
When the new compute machine set is available, the DESIRED
and CURRENT
values match. If the compute machine set is not available, wait a few minutes and run the command again.