{
"Version": "2012-10-17",
"Statement": [
{
"Action": [
"ec2:ModifyAvailabilityZoneGroup"
],
"Effect": "Allow",
"Resource": "*"
}
]
}
You can quickly install an OKD cluster in Amazon Web Services (AWS) Local Zones by setting the zone names in the edge compute pool of the install-config.yaml
file, or install a cluster in an existing VPC that lists Local Zone subnets.
AWS Local Zones are a type of infrastructure that place Cloud Resources close to metropolitan regions. For more information, see the AWS Local Zones Documentation.
The steps for performing an installer-provisioned infrastructure installation are provided for example purposes only. Installing a cluster in an existing VPC requires that you have knowledge of the cloud provider and the installation process of OKD. You can use a CloudFormation template to assist you with completing these steps or to help model your own cluster installation. Instead of using the CloudFormation template to create resources, you can decide to use other methods for generating these resources. |
You reviewed details about the OKD installation and update processes.
You read the documentation on selecting a cluster installation method and preparing it for users.
You configured an AWS account to host the cluster.
If you have an AWS profile stored on your computer, it must not use a temporary session token that you generated while using a multi-factor authentication device. The cluster continues to use your current AWS credentials to create AWS resources for the entire life of the cluster, so you must use key-based, long-term credentials. To generate appropriate keys, see Managing Access Keys for IAM Users in the AWS documentation. You can supply the keys when you run the installation program. |
You noted the region and supported AWS Local Zones locations to create the network resources in.
You read the Features for each AWS Local Zones location.
You downloaded the AWS CLI and installed it on your computer. See Install the AWS CLI Using the Bundled Installer (Linux, macOS, or UNIX) in the AWS documentation.
If you use a firewall, you configured it to allow the sites that your cluster requires access to.
Be sure to also review this site list if you are configuring a proxy. |
Add permission for the user who creates the cluster to modify the Local Zone group with ec2:ModifyAvailabilityZoneGroup
. For example:
{
"Version": "2012-10-17",
"Statement": [
{
"Action": [
"ec2:ModifyAvailabilityZoneGroup"
],
"Effect": "Allow",
"Resource": "*"
}
]
}
Some limitations exist when you attempt to deploy a cluster with a default installation configuration in Amazon Web Services (AWS) Local Zones.
The following list details limitations when deploying a cluster in AWS Local Zones:
|
If you want the installation program to automatically create Local Zone subnets for your OKD cluster, specific configuration limitations apply with this method.
The following configuration limitation applies when you set the installation program to automatically create subnets for your OKD cluster:
|
If you are deploying an OKD cluster using an AWS Marketplace image, you must first subscribe through AWS. Subscribing to the offer provides you with the AMI ID that the installation program uses to deploy worker nodes.
You have an AWS account to purchase the offer. This account does not have to be the same account that is used to install the cluster.
Complete the OKD subscription from the AWS Marketplace.
Record the AMI ID for your specific region. As part of the installation process, you must update the install-config.yaml
file with this value before deploying the cluster.
install-config.yaml
file with AWS Marketplace worker nodesapiVersion: v1
baseDomain: example.com
compute:
- hyperthreading: Enabled
name: worker
platform:
aws:
amiID: ami-06c4d345f7c207239 (1)
type: m5.4xlarge
replicas: 3
metadata:
name: test-cluster
platform:
aws:
region: us-east-2 (2)
sshKey: ssh-ed25519 AAAA...
pullSecret: '{"auths": ...}'
1 | The AMI ID from your AWS Marketplace subscription. |
2 | Your AMI ID is associated with a specific AWS region. When creating the installation configuration file, ensure that you select the same AWS region that you specified when configuring your subscription. |
You can install the OpenShift CLI (oc
) to interact with
OKD
from a command-line interface. You can install oc
on Linux, Windows, or macOS.
If you installed an earlier version of |
You can install the OpenShift CLI (oc
) binary on Linux by using the following procedure.
Navigate to https://mirror.openshift.com/pub/openshift-v4/clients/oc/latest/ and choose the folder for your operating system and architecture.
Download oc.tar.gz
.
Unpack the archive:
$ tar xvf <file>
Place the oc
binary in a directory that is on your PATH
.
To check your PATH
, execute the following command:
$ echo $PATH
After you install the OpenShift CLI, it is available using the oc
command:
$ oc <command>
You can install the OpenShift CLI (oc
) binary on Windows by using the following procedure.
Navigate to https://mirror.openshift.com/pub/openshift-v4/clients/oc/latest/ and choose the folder for your operating system and architecture.
Download oc.zip
.
Unzip the archive with a ZIP program.
Move the oc
binary to a directory that is on your PATH
.
To check your PATH
, open the command prompt and execute the following command:
C:\> path
After you install the OpenShift CLI, it is available using the oc
command:
C:\> oc <command>
You can install the OpenShift CLI (oc
) binary on macOS by using the following procedure.
Navigate to https://mirror.openshift.com/pub/openshift-v4/clients/oc/latest/ and choose the folder for your operating system and architecture.
Download oc.tar.gz
.
Unpack and unzip the archive.
Move the oc
binary to a directory on your PATH.
To check your PATH
, open a terminal and execute the following command:
$ echo $PATH
Verify your installation by using an oc
command:
$ oc <command>
Before you extend nodes to local zones, you must prepare certain resources for the cluster installation environment.
Before you install OKD, download the installation file on the host you are using for installation.
You have a computer that runs Linux or macOS, with at least 1.2 GB of local disk space.
Download the installation program from https://github.com/openshift/okd/releases.
|
Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
$ tar -xvf openshift-install-linux.tar.gz
Download your installation pull secret from Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OKD components.
Using a pull secret from Red Hat OpenShift Cluster Manager is not required. You can use a pull secret for another private registry. Or, if you do not need the cluster to pull images from a private registry, you can use {"auths":{"fake":{"auth":"aWQ6cGFzcwo="}}}
as the pull secret when prompted during the installation.
If you do not use the pull secret from Red Hat OpenShift Cluster Manager:
Red Hat Operators are not available.
The Telemetry and Insights operators do not send data to Red Hat.
Content from the Red Hat Ecosystem Catalog Container images registry, such as image streams and Operators, are not available.
During an OKD installation, you can provide an SSH public key to the installation program. The key is passed to the Fedora CoreOS (FCOS) nodes through their Ignition config files and is used to authenticate SSH access to the nodes. The key is added to the ~/.ssh/authorized_keys
list for the core
user on each node, which enables password-less authentication.
After the key is passed to the nodes, you can use the key pair to SSH in to the FCOS nodes as the user core
. To access the nodes through SSH, the private key identity must be managed by SSH for your local user.
If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you must provide the SSH public key during the installation process. The ./openshift-install gather
command also requires the SSH public key to be in place on the cluster nodes.
Do not skip this procedure in production environments, where disaster recovery and debugging is required. |
You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs. |
On clusters running Fedora CoreOS (FCOS), the SSH keys specified in the Ignition config files are written to the |
If you do not have an existing SSH key pair on your local machine to use for authentication onto your cluster nodes, create one. For example, on a computer that uses a Linux operating system, run the following command:
$ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> (1)
1 | Specify the path and file name, such as ~/.ssh/id_ed25519 , of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory. |
If you plan to install an OKD cluster that uses the Fedora cryptographic libraries that have been submitted to NIST for FIPS 140-2/140-3 Validation on only the |
View the public SSH key:
$ cat <path>/<file_name>.pub
For example, run the following to view the ~/.ssh/id_ed25519.pub
public key:
$ cat ~/.ssh/id_ed25519.pub
Add the SSH private key identity to the SSH agent for your local user, if it has not already been added. SSH agent management of the key is required for password-less SSH authentication onto your cluster nodes, or if you want to use the ./openshift-install gather
command.
On some distributions, default SSH private key identities such as |
If the ssh-agent
process is not already running for your local user, start it as a background task:
$ eval "$(ssh-agent -s)"
Agent pid 31874
If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA. |
Add your SSH private key to the ssh-agent
:
$ ssh-add <path>/<file_name> (1)
1 | Specify the path and file name for your SSH private key, such as ~/.ssh/id_ed25519 |
Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
When you install OKD, provide the SSH public key to the installation program.
To install OKD on Amazon Web Services (AWS) using user-provisioned infrastructure, you must generate the files that the installation program needs to deploy your cluster and modify them so that the cluster creates only the machines that it will use. You generate and customize the install-config.yaml
file, Kubernetes manifests, and Ignition config files. You also have the option to first set up a separate var
partition during the preparation phases of installation.
Each cluster machine must meet the following minimum requirements:
Machine | Operating System | vCPU [1] | Virtual RAM | Storage | Input/Output Per Second (IOPS)[2] |
---|---|---|---|---|---|
Bootstrap |
FCOS |
4 |
16 GB |
100 GB |
300 |
Control plane |
FCOS |
4 |
16 GB |
100 GB |
300 |
Compute |
FCOS |
2 |
8 GB |
100 GB |
300 |
One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or Hyper-Threading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.
OKD and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.
As with all user-provisioned installations, if you choose to use Fedora compute machines in your cluster, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks. Use of Fedora 7 compute machines is deprecated and has been removed in OKD 4.10 and later.
As of OKD version 4.13, RHCOS is based on RHEL version 9.2, which updates the micro-architecture requirements. The following list contains the minimum instruction set architectures (ISA) that each architecture requires:
For more information, see RHEL Architectures. |
If an instance type for your platform meets the minimum requirements for cluster machines, it is supported to use in OKD.
The following Amazon Web Services (AWS) instance types have been tested with OKD for use with AWS Local Zones.
Use the machine types included in the following charts for your AWS instances. If you use an instance type that is not listed in the chart, ensure that the instance size you use matches the minimum resource requirements that are listed in "Minimum resource requirements for cluster installation". |
c5.*
c5d.*
m6i.*
m5.*
r5.*
t3.*
See AWS Local Zones features in the AWS documentation for more information about AWS Local Zones and the supported instances types and services.
Generate and customize the installation configuration file that the installation program needs to deploy your cluster.
You obtained the OKD installation program and the pull secret for your cluster.
You checked that you are deploying your cluster to a region with an accompanying Fedora CoreOS (FCOS) AMI published by Red Hat. If you are deploying to a region that requires a custom AMI, such as an AWS GovCloud region, you must create the install-config.yaml
file manually.
Create the install-config.yaml
file.
Change to the directory that contains the installation program and run the following command:
$ ./openshift-install create install-config --dir <installation_directory> (1)
1 | For <installation_directory> , specify the directory name to store the
files that the installation program creates. |
Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OKD version. |
At the prompts, provide the configuration details for your cloud:
Optional: Select an SSH key to use to access your cluster machines.
For production OKD clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your |
Select aws as the platform to target.
If you do not have an AWS profile stored on your computer, enter the AWS access key ID and secret access key for the user that you configured to run the installation program.
The AWS access key ID and secret access key are stored in |
Select the AWS region to deploy the cluster to. The region that you specify must be the same region that contains the Local Zone that you opted in to for your AWS account.
Select the base domain for the Route 53 service that you configured for your cluster.
Enter a descriptive name for your cluster.
Paste the pull secret from Red Hat OpenShift Cluster Manager. This field is optional.
Optional: Back up the install-config.yaml
file.
The |
Edge worker nodes are tainted worker nodes that run in AWS Local Zones locations.
When deploying a cluster that uses Local Zones, consider the following points:
Amazon EC2 instances in the Local Zones are more expensive than Amazon EC2 instances in the Availability Zones.
Latency between applications and end users is lower in Local Zones, and latency might vary by location. A latency impact exists for some workloads if, for example, ingress traffic is mixed between Local Zones and Availability Zones.
Generally, the maximum transmission unit (MTU) between an Amazon EC2 instance in a Local Zone and an Amazon EC2 instance in the Region is 1300. For more information, see How Local Zones work in the AWS documentation. The cluster network MTU must be always less than the EC2 MTU to account for the overhead. The specific overhead is determined by the network plugin, for example:
The network plugin can provide additional features, like IPsec, that also must be decreased the MTU. For additional information, see the documentation. |
OKD 4.12 introduced a new compute pool, edge, that is designed for use in remote zones. The edge compute pool configuration is common between AWS Local Zones locations. Because of the type and size limitations of resources like EC2 and EBS on Local Zone resources, the default instance type can vary from the traditional worker pool.
The default Elastic Block Store (EBS) for Local Zone locations is gp2
, which differs from the regular worker pool. The instance type used for each Local Zone on edge compute pool also might differ from worker pools, depending on the instance offerings on the zone.
The edge compute pool creates new labels that developers can use to deploy applications onto AWS Local Zones nodes. The new labels are:
node-role.kubernetes.io/edge=''
machine.openshift.io/zone-type=local-zone
machine.openshift.io/zone-group=$ZONE_GROUP_NAME
By default, the machine sets for the edge compute pool defines the taint of NoSchedule
to prevent regular workloads from spreading on Local Zone instances. Users can only run user workloads if they define tolerations in the pod specification.
The following examples show install-config.yaml
files that use the edge machine pool.
apiVersion: v1
baseDomain: devcluster.openshift.com
metadata:
name: ipi-localzone
compute:
- name: edge
platform:
aws:
type: m5.4xlarge
platform:
aws:
region: us-west-2
pullSecret: '{"auths": ...}'
sshKey: ssh-ed25519 AAAA...
Instance types differ between locations. To verify availability in the Local Zone in which the cluster runs, see the AWS documentation.
apiVersion: v1
baseDomain: devcluster.openshift.com
metadata:
name: ipi-localzone
compute:
- name: edge
platform:
aws:
rootVolume:
type: gp3
size: 120
platform:
aws:
region: us-west-2
pullSecret: '{"auths": ...}'
sshKey: ssh-ed25519 AAAA...
EBS types differ between locations. Check the AWS documentation to verify availability in the Local Zone in which the cluster runs.
apiVersion: v1
baseDomain: devcluster.openshift.com
metadata:
name: ipi-localzone
compute:
- name: edge
platform:
aws:
additionalSecurityGroupIDs:
- sg-1 (1)
- sg-2
platform:
aws:
region: us-west-2
pullSecret: '{"auths": ...}'
sshKey: ssh-ed25519 AAAA...
1 | Specify the name of the security group as it appears in the Amazon EC2 console, including the sg prefix. |
If you plan to create the subnets in AWS Local Zones, you must opt in to each zone group separately.
You have installed the AWS CLI.
You have determined an AWS Region for where you want to deploy your OKD cluster.
You have attached a permissive IAM policy to a user or role account that opts in to the zone group. Consider the following configuration as an example IAM policy:
{
"Version": "2012-10-17",
"Statement": [
{
"Action": [
"ec2:ModifyAvailabilityZoneGroup"
],
"Effect": "Allow",
"Resource": "*"
}
]
}
List the zones that are available in your AWS Region by running the following command:
$ aws --region "<value_of_AWS_Region>" ec2 describe-availability-zones \
--query 'AvailabilityZones[].[{ZoneName: ZoneName, GroupName: GroupName, Status: OptInStatus}]' \
--filters Name=zone-type,Values=local-zone \
--all-availability-zones
Depending on the AWS Region, the list of available zones can be long. The command returns the following fields:
ZoneName
The name of the Local Zone.
GroupName
The group that comprises the zone. To opt in to the region, save the name.
Status
The status of the Local Zone group. If the status is not-opted-in
, you must opt in the GroupName
by running the commands that follow.
Opt in to the zone group on your AWS account by running the following command:
$ aws ec2 modify-availability-zone-group \
--group-name "<value_of_GroupName>" \(1)
--opt-in-status opted-in
1 | For <value_of_GroupName> , specify the name of the group of the Local Zone where you want to create subnets. For example, specify us-east-1-nyc-1 to use the zone us-east-1-nyc-1a (US East New York). |
To install an OKD cluster in an AWS Local Zones environment on AWS infrastructure, choose one of the following installation options:
Installing a cluster to quickly extend workers to edge compute pools, where the installation program automatically creates resources for the OKD cluster.
Installing a cluster on AWS into an existing VPC, where you must add Local Zone subnets to the install-config.yaml
file.
Choose one of the following options to install an OKD cluster in an AWS Local Zones environment:
For OKD 4.14, you can quickly install a cluster on Amazon Web Services (AWS) to extend compute nodes to Local Zone locations. By using this installation route, the installation program automatically creates network resources and Local Zone subnets for each Local Zone that you defined in your configuration file. To customize the installation, you must modify parameters in the install-config.yaml
file before you deploy the cluster.
Modify an install-config.yaml
file to include AWS Local Zones.
You have configured an AWS account.
You added your AWS keys and region to your local AWS profile by running aws configure
.
You have read the configuration limitations that apply when you specify the installation program to automatically create subnets for your OKD cluster. See the section named "Cluster limitations in AWS Local Zones".
You opted in to the Local Zone group for each zone.
You created an install-config.yaml
file by using the procedure "Creating the installation configuration file".
Modify the install-config.yaml
file by specifying Local Zone names in the platform.aws.zones
property of the edge compute pool. For example:
...
platform:
aws:
region: <region_name> (1)
compute:
- name: edge
platform:
aws:
zones: (2)
- <local_zone_name>
#...
1 | The AWS Region name. |
2 | The list of Local Zone names that must belong in the same AWS Region. |
us-west-2
AWS Region that extends edge nodes to Local Zones in Los Angeles
and Las Vegas
locations.apiVersion: v1
baseDomain: example.com
metadata:
name: cluster-name
platform:
aws:
region: us-west-2
compute:
- name: edge
platform:
aws:
zones:
- us-west-2-lax-1a
- us-west-2-lax-1b
- us-west-2-las-1a
pullSecret: '{"auths": ...}'
sshKey: 'ssh-ed25519 AAAA...'
#...
Deploy your cluster.
You can install a cluster into an existing Amazon Virtual Private Cloud (VPC) on Amazon Web Services (AWS). The installation program provisions the rest of the required infrastructure, which you can further customize. To customize the installation, modify parameters in the install-config.yaml
file before you install the cluster.
Installing a cluster on AWS into an existing VPC requires extending workers to the edge of the Cloud Infrastructure by using AWS Local Zones.
Local Zone subnets extend regular workers' nodes to edge networks. Each edge worker nodes runs a user workload. After you create an Amazon Web Service (AWS) Local Zone environment, and you deploy your cluster, you can use edge worker nodes to create user workloads in Local Zone subnets.
You can use a provided CloudFormation template to create the VPC and public subnets. Additionally, you can modify a template to customize your infrastructure or use the information that they contain to create AWS objects according to your company’s policies.
If you want to create private subnets, you must either modify the provided CloudFormation template or create your own template. |
You can create a Virtual Private Cloud (VPC), and subnets for each Local Zone location, in Amazon Web Services (AWS) for your OKD cluster to extend worker nodes to the edge locations. You can further customize the VPC to meet your requirements, including VPN, route tables, and add new Local Zone subnets that are not included at initial deployment.
You can use the provided CloudFormation template and a custom parameter file to create a stack of AWS resources that represent the VPC.
If you do not use the provided CloudFormation template to create your AWS infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs. |
You configured an AWS account.
You added your AWS keys and region to your local AWS profile by running aws configure
.
You opted in to the AWS Local Zones on your AWS account.
Create a JSON file that contains the parameter values that the template requires:
[
{
"ParameterKey": "VpcCidr", (1)
"ParameterValue": "10.0.0.0/16" (2)
},
{
"ParameterKey": "AvailabilityZoneCount", (3)
"ParameterValue": "3" (4)
},
{
"ParameterKey": "SubnetBits", (5)
"ParameterValue": "12" (6)
}
]
1 | The CIDR block for the VPC. |
2 | Specify a CIDR block in the format x.x.x.x/16-24 . |
3 | The number of availability zones to deploy the VPC in. |
4 | Specify an integer between 1 and 3 . |
5 | The size of each subnet in each availability zone. |
6 | Specify an integer between 5 and 13 , where 5 is /27 and 13 is /19 . |
Copy the template from the CloudFormation template for the VPC section of this topic and save it as a YAML file on your computer. This template describes the VPC that your cluster requires.
Launch the CloudFormation template to create a stack of AWS resources that represent the VPC by running the following command:
You must enter the command on a single line. |
$ aws cloudformation create-stack --stack-name <name> \ (1)
--template-body file://<template>.yaml \ (2)
--parameters file://<parameters>.json (3)
1 | <name> is the name for the CloudFormation stack, such as cluster-vpc .
You need the name of this stack if you remove the cluster. |
2 | <template> is the relative path to and name of the CloudFormation template
YAML file that you saved. |
3 | <parameters> is the relative path to and name of the CloudFormation
parameters JSON file. |
arn:aws:cloudformation:us-east-1:123456789012:stack/cluster-vpc/dbedae40-2fd3-11eb-820e-12a48460849f
Confirm that the template components exist by running the following command:
$ aws cloudformation describe-stacks --stack-name <name>
After the StackStatus
displays CREATE_COMPLETE
, the output displays values
for the following parameters. You must provide these parameter values to
the other CloudFormation templates that you run to create your cluster:
VpcId
|
The ID of your VPC. |
PublicSubnetIds
|
The IDs of the new public subnets. |
PrivateSubnetIds
|
The IDs of the new private subnets. |
PublicRouteTableId
|
The ID of the new public route table ID. |
You must create a subnet in AWS Local Zones before you configure a worker machineset for your OKD cluster.
You must repeat the following process for each Local Zone you want to deploy worker nodes to.
You can use the provided CloudFormation template and a custom parameter file to create a stack of AWS resources that represent the subnet.
If you do not use the provided CloudFormation template to create your AWS infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs. |
You configured an AWS account.
You added your AWS keys and region to your local AWS profile by running aws configure
.
You opted in to the Local Zone group.
Create a JSON file that contains the parameter values that the template requires:
[
{
"ParameterKey": "VpcId",
"ParameterValue": "<value_of_VpcId>" (1)
},
{
"ParameterKey": "PublicRouteTableId",
"ParameterValue": "<value_of_PublicRouteTableId>" (2)
},
{
"ParameterKey": "ZoneName",
"ParameterValue": "<value_of_ZoneName>" (3)
},
{
"ParameterKey": "SubnetName",
"ParameterValue": "<value_of_SubnetName>"
},
{
"ParameterKey": "PublicSubnetCidr",
"ParameterValue": "10.0.192.0/20" (4)
}
]
1 | Specify the VPC ID, which is the value VpcID in the output of the CloudFormation template.
for the VPC. |
2 | Specify the Route Table ID, which is the value of the PublicRouteTableId in the CloudFormation stack
for the VPC. |
3 | Specify the AWS Local Zone name, which is the value of the ZoneName field in the AvailabilityZones object that you retrieve in the section "Opting in to AWS Local Zones". |
4 | Specify a CIDR block that is used to create the Local Zone subnet. This block must be part of the VPC CIDR block VpcCidr . |
Copy the template from the CloudFormation template for the subnet section of this topic and save it as a YAML file on your computer. This template describes the VPC that your cluster requires.
Launch the CloudFormation template to create a stack of AWS resources that represent the VPC by running the following command:
You must enter the command on a single line. |
$ aws cloudformation create-stack --stack-name <subnet_stack_name> \ (1)
--template-body file://<template>.yaml \ (2)
--parameters file://<parameters>.json (3)
1 | <subnet_stack_name> is the name for the CloudFormation stack, such as cluster-lz-<local_zone_shortname> .
You need the name of this stack if you remove the cluster. |
2 | <template> is the relative path to and name of the CloudFormation template
YAML file that you saved. |
3 | <parameters> is the relative path to and name of the CloudFormation
parameters JSON file. |
arn:aws:cloudformation:us-east-1:123456789012:stack/<subnet_stack_name>/dbedae40-2fd3-11eb-820e-12a48460849f
Confirm that the template components exist by running the following command:
$ aws cloudformation describe-stacks --stack-name <subnet_stack_name>
After the StackStatus
displays CREATE_COMPLETE
, the output displays values
for the following parameters. You must provide these parameter values to
the other CloudFormation templates that you run to create your cluster:
PublicSubnetIds
|
The IDs of the new public subnets. |
You can use the following CloudFormation template to deploy the VPC that you need for your OKD cluster.
AWSTemplateFormatVersion: 2010-09-09
Description: Template for Best Practice VPC with 1-3 AZs
Parameters:
VpcCidr:
AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])(\/(1[6-9]|2[0-4]))$
ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/16-24.
Default: 10.0.0.0/16
Description: CIDR block for VPC.
Type: String
AvailabilityZoneCount:
ConstraintDescription: "The number of availability zones. (Min: 1, Max: 3)"
MinValue: 1
MaxValue: 3
Default: 1
Description: "How many AZs to create VPC subnets for. (Min: 1, Max: 3)"
Type: Number
SubnetBits:
ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/19-27.
MinValue: 5
MaxValue: 13
Default: 12
Description: "Size of each subnet to create within the availability zones. (Min: 5 = /27, Max: 13 = /19)"
Type: Number
Metadata:
AWS::CloudFormation::Interface:
ParameterGroups:
- Label:
default: "Network Configuration"
Parameters:
- VpcCidr
- SubnetBits
- Label:
default: "Availability Zones"
Parameters:
- AvailabilityZoneCount
ParameterLabels:
AvailabilityZoneCount:
default: "Availability Zone Count"
VpcCidr:
default: "VPC CIDR"
SubnetBits:
default: "Bits Per Subnet"
Conditions:
DoAz3: !Equals [3, !Ref AvailabilityZoneCount]
DoAz2: !Or [!Equals [2, !Ref AvailabilityZoneCount], Condition: DoAz3]
Resources:
VPC:
Type: "AWS::EC2::VPC"
Properties:
EnableDnsSupport: "true"
EnableDnsHostnames: "true"
CidrBlock: !Ref VpcCidr
PublicSubnet:
Type: "AWS::EC2::Subnet"
Properties:
VpcId: !Ref VPC
CidrBlock: !Select [0, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
AvailabilityZone: !Select
- 0
- Fn::GetAZs: !Ref "AWS::Region"
PublicSubnet2:
Type: "AWS::EC2::Subnet"
Condition: DoAz2
Properties:
VpcId: !Ref VPC
CidrBlock: !Select [1, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
AvailabilityZone: !Select
- 1
- Fn::GetAZs: !Ref "AWS::Region"
PublicSubnet3:
Type: "AWS::EC2::Subnet"
Condition: DoAz3
Properties:
VpcId: !Ref VPC
CidrBlock: !Select [2, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
AvailabilityZone: !Select
- 2
- Fn::GetAZs: !Ref "AWS::Region"
InternetGateway:
Type: "AWS::EC2::InternetGateway"
GatewayToInternet:
Type: "AWS::EC2::VPCGatewayAttachment"
Properties:
VpcId: !Ref VPC
InternetGatewayId: !Ref InternetGateway
PublicRouteTable:
Type: "AWS::EC2::RouteTable"
Properties:
VpcId: !Ref VPC
PublicRoute:
Type: "AWS::EC2::Route"
DependsOn: GatewayToInternet
Properties:
RouteTableId: !Ref PublicRouteTable
DestinationCidrBlock: 0.0.0.0/0
GatewayId: !Ref InternetGateway
PublicSubnetRouteTableAssociation:
Type: "AWS::EC2::SubnetRouteTableAssociation"
Properties:
SubnetId: !Ref PublicSubnet
RouteTableId: !Ref PublicRouteTable
PublicSubnetRouteTableAssociation2:
Type: "AWS::EC2::SubnetRouteTableAssociation"
Condition: DoAz2
Properties:
SubnetId: !Ref PublicSubnet2
RouteTableId: !Ref PublicRouteTable
PublicSubnetRouteTableAssociation3:
Condition: DoAz3
Type: "AWS::EC2::SubnetRouteTableAssociation"
Properties:
SubnetId: !Ref PublicSubnet3
RouteTableId: !Ref PublicRouteTable
PrivateSubnet:
Type: "AWS::EC2::Subnet"
Properties:
VpcId: !Ref VPC
CidrBlock: !Select [3, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
AvailabilityZone: !Select
- 0
- Fn::GetAZs: !Ref "AWS::Region"
PrivateRouteTable:
Type: "AWS::EC2::RouteTable"
Properties:
VpcId: !Ref VPC
PrivateSubnetRouteTableAssociation:
Type: "AWS::EC2::SubnetRouteTableAssociation"
Properties:
SubnetId: !Ref PrivateSubnet
RouteTableId: !Ref PrivateRouteTable
NAT:
DependsOn:
- GatewayToInternet
Type: "AWS::EC2::NatGateway"
Properties:
AllocationId:
"Fn::GetAtt":
- EIP
- AllocationId
SubnetId: !Ref PublicSubnet
EIP:
Type: "AWS::EC2::EIP"
Properties:
Domain: vpc
Route:
Type: "AWS::EC2::Route"
Properties:
RouteTableId:
Ref: PrivateRouteTable
DestinationCidrBlock: 0.0.0.0/0
NatGatewayId:
Ref: NAT
PrivateSubnet2:
Type: "AWS::EC2::Subnet"
Condition: DoAz2
Properties:
VpcId: !Ref VPC
CidrBlock: !Select [4, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
AvailabilityZone: !Select
- 1
- Fn::GetAZs: !Ref "AWS::Region"
PrivateRouteTable2:
Type: "AWS::EC2::RouteTable"
Condition: DoAz2
Properties:
VpcId: !Ref VPC
PrivateSubnetRouteTableAssociation2:
Type: "AWS::EC2::SubnetRouteTableAssociation"
Condition: DoAz2
Properties:
SubnetId: !Ref PrivateSubnet2
RouteTableId: !Ref PrivateRouteTable2
NAT2:
DependsOn:
- GatewayToInternet
Type: "AWS::EC2::NatGateway"
Condition: DoAz2
Properties:
AllocationId:
"Fn::GetAtt":
- EIP2
- AllocationId
SubnetId: !Ref PublicSubnet2
EIP2:
Type: "AWS::EC2::EIP"
Condition: DoAz2
Properties:
Domain: vpc
Route2:
Type: "AWS::EC2::Route"
Condition: DoAz2
Properties:
RouteTableId:
Ref: PrivateRouteTable2
DestinationCidrBlock: 0.0.0.0/0
NatGatewayId:
Ref: NAT2
PrivateSubnet3:
Type: "AWS::EC2::Subnet"
Condition: DoAz3
Properties:
VpcId: !Ref VPC
CidrBlock: !Select [5, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
AvailabilityZone: !Select
- 2
- Fn::GetAZs: !Ref "AWS::Region"
PrivateRouteTable3:
Type: "AWS::EC2::RouteTable"
Condition: DoAz3
Properties:
VpcId: !Ref VPC
PrivateSubnetRouteTableAssociation3:
Type: "AWS::EC2::SubnetRouteTableAssociation"
Condition: DoAz3
Properties:
SubnetId: !Ref PrivateSubnet3
RouteTableId: !Ref PrivateRouteTable3
NAT3:
DependsOn:
- GatewayToInternet
Type: "AWS::EC2::NatGateway"
Condition: DoAz3
Properties:
AllocationId:
"Fn::GetAtt":
- EIP3
- AllocationId
SubnetId: !Ref PublicSubnet3
EIP3:
Type: "AWS::EC2::EIP"
Condition: DoAz3
Properties:
Domain: vpc
Route3:
Type: "AWS::EC2::Route"
Condition: DoAz3
Properties:
RouteTableId:
Ref: PrivateRouteTable3
DestinationCidrBlock: 0.0.0.0/0
NatGatewayId:
Ref: NAT3
S3Endpoint:
Type: AWS::EC2::VPCEndpoint
Properties:
PolicyDocument:
Version: 2012-10-17
Statement:
- Effect: Allow
Principal: '*'
Action:
- '*'
Resource:
- '*'
RouteTableIds:
- !Ref PublicRouteTable
- !Ref PrivateRouteTable
- !If [DoAz2, !Ref PrivateRouteTable2, !Ref "AWS::NoValue"]
- !If [DoAz3, !Ref PrivateRouteTable3, !Ref "AWS::NoValue"]
ServiceName: !Join
- ''
- - com.amazonaws.
- !Ref 'AWS::Region'
- .s3
VpcId: !Ref VPC
Outputs:
VpcId:
Description: ID of the new VPC.
Value: !Ref VPC
PublicSubnetIds:
Description: Subnet IDs of the public subnets.
Value:
!Join [
",",
[!Ref PublicSubnet, !If [DoAz2, !Ref PublicSubnet2, !Ref "AWS::NoValue"], !If [DoAz3, !Ref PublicSubnet3, !Ref "AWS::NoValue"]]
]
PrivateSubnetIds:
Description: Subnet IDs of the private subnets.
Value:
!Join [
",",
[!Ref PrivateSubnet, !If [DoAz2, !Ref PrivateSubnet2, !Ref "AWS::NoValue"], !If [DoAz3, !Ref PrivateSubnet3, !Ref "AWS::NoValue"]]
]
PublicRouteTableId:
Description: Public Route table ID
Value: !Ref PublicRouteTable
By default, the installation program creates and attaches security groups to control plane and compute machines. The rules associated with the default security groups cannot be modified.
However, you can apply additional existing AWS security groups, which are associated with your existing VPC, to control plane and compute machines. Applying custom security groups can help you meet the security needs of your organization, in such cases where you need to control the incoming or outgoing traffic of these machines.
As part of the installation process, you apply custom security groups by modifying the install-config.yaml
file before deploying the cluster.
For more information, see "Edge compute pools and AWS Local Zones".
You can use the following CloudFormation template to deploy the subnet that you need for your OKD cluster that uses AWS Local Zones.
# CloudFormation template used to create Local Zone subnets and dependencies
AWSTemplateFormatVersion: 2010-09-09
Description: Template for create Public Local Zone subnets
Parameters:
VpcId:
Description: VPC Id
Type: String
ZoneName:
Description: Local Zone Name (Example us-east-1-nyc-1a)
Type: String
SubnetName:
Description: Local Zone Name (Example cluster-public-us-east-1-nyc-1a)
Type: String
PublicRouteTableId:
Description: Public Route Table ID to associate the Local Zone subnet
Type: String
PublicSubnetCidr:
AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])(\/(1[6-9]|2[0-4]))$
ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/16-24.
Default: 10.0.128.0/20
Description: CIDR block for Public Subnet
Type: String
Resources:
PublicSubnet:
Type: "AWS::EC2::Subnet"
Properties:
VpcId: !Ref VpcId
CidrBlock: !Ref PublicSubnetCidr
AvailabilityZone: !Ref ZoneName
Tags:
- Key: Name
Value: !Ref SubnetName
- Key: kubernetes.io/cluster/unmanaged
Value: "true"
PublicSubnetRouteTableAssociation:
Type: "AWS::EC2::SubnetRouteTableAssociation"
Properties:
SubnetId: !Ref PublicSubnet
RouteTableId: !Ref PublicRouteTableId
Outputs:
PublicSubnetIds:
Description: Subnet IDs of the public subnets.
Value:
!Join ["", [!Ref PublicSubnet]]
You can view details about the CloudFormation stacks that you create by navigating to the AWS CloudFormation console.
Modify an install-config.yaml
file to include AWS Local Zones subnets.
You created subnets by using the procedure "Creating a subnet in AWS Local Zones".
You created an install-config.yaml
file by using the procedure "Creating the installation configuration file".
Modify the install-config.yaml
configuration file by specifying Local Zone subnets in the platform.aws.subnets
property, as demonstrated in the following example:
...
platform:
aws:
region: us-west-2
subnets: (1)
- publicSubnetId-1
- publicSubnetId-2
- publicSubnetId-3
- privateSubnetId-1
- privateSubnetId-2
- privateSubnetId-3
- publicSubnetId-LocalZone-1
...
1 | List of subnets created in the Availability and Local Zones. |
See Configuration and credential file settings in the AWS documentation for more information about AWS profile and credential configuration.
You can install OKD on a compatible cloud platform.
You can run the |
You have configured an account with the cloud platform that hosts your cluster.
You have the OKD installation program and the pull secret for your cluster.
You have verified that the cloud provider account on your host has the correct permissions to deploy the cluster. An account with incorrect permissions causes the installation process to fail with an error message that displays the missing permissions.
Change to the directory that contains the installation program and initialize the cluster deployment:
$ ./openshift-install create cluster --dir <installation_directory> \ (1)
--log-level=info (2)
1 | For <installation_directory> , specify the
location of your customized ./install-config.yaml file. |
2 | To view different installation details, specify warn , debug , or
error instead of info . |
Optional: Remove or disable the AdministratorAccess
policy from the IAM
account that you used to install the cluster.
The elevated permissions provided by the |
When the cluster deployment completes successfully:
The terminal displays directions for accessing your cluster, including a link to the web console and credentials for the kubeadmin
user.
Credential information also outputs to <installation_directory>/.openshift_install.log
.
Do not delete the installation program or the files that the installation program creates. Both are required to delete the cluster. |
...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s
|
You can log in to your cluster as a default system user by exporting the cluster kubeconfig
file.
The kubeconfig
file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server.
The file is specific to a cluster and is created during OKD installation.
You deployed an OKD cluster.
You installed the oc
CLI.
Export the kubeadmin
credentials:
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig (1)
1 | For <installation_directory> , specify the path to the directory that you stored
the installation files in. |
Verify you can run oc
commands successfully using the exported configuration:
$ oc whoami
system:admin
/validating-an-installation.adoc
The kubeadmin
user exists by default after an OKD installation. You can log in to your cluster as the kubeadmin
user by using the OKD web console.
You have access to the installation host.
You completed a cluster installation and all cluster Operators are available.
Obtain the password for the kubeadmin
user from the kubeadmin-password
file on the installation host:
$ cat <installation_directory>/auth/kubeadmin-password
Alternatively, you can obtain the |
List the OKD web console route:
$ oc get routes -n openshift-console | grep 'console-openshift'
Alternatively, you can obtain the OKD route from the |
console console-openshift-console.apps.<cluster_name>.<base_domain> console https reencrypt/Redirect None
Navigate to the route detailed in the output of the preceding command in a web browser and log in as the kubeadmin
user.
See Accessing the web console for more details about accessing and understanding the OKD web console.
After you install a cluster that uses AWS Local Zones, check the status of the machine that was created by the machine set manifests created at install time.
To check the machine sets created from the subnet you added to the install-config.yaml
file, run the following command:
$ oc get machineset -n openshift-machine-api
NAME DESIRED CURRENT READY AVAILABLE AGE
cluster-7xw5g-edge-us-east-1-nyc-1a 1 1 1 1 3h4m
cluster-7xw5g-worker-us-east-1a 1 1 1 1 3h4m
cluster-7xw5g-worker-us-east-1b 1 1 1 1 3h4m
cluster-7xw5g-worker-us-east-1c 1 1 1 1 3h4m
To check the machines that were created from the machine sets, run the following command:
$ oc get machines -n openshift-machine-api
NAME PHASE TYPE REGION ZONE AGE cluster-7xw5g-edge-us-east-1-nyc-1a-wbclh Running c5d.2xlarge us-east-1 us-east-1-nyc-1a 3h cluster-7xw5g-master-0 Running m6i.xlarge us-east-1 us-east-1a 3h4m cluster-7xw5g-master-1 Running m6i.xlarge us-east-1 us-east-1b 3h4m cluster-7xw5g-master-2 Running m6i.xlarge us-east-1 us-east-1c 3h4m cluster-7xw5g-worker-us-east-1a-rtp45 Running m6i.xlarge us-east-1 us-east-1a 3h cluster-7xw5g-worker-us-east-1b-glm7c Running m6i.xlarge us-east-1 us-east-1b 3h cluster-7xw5g-worker-us-east-1c-qfvz4 Running m6i.xlarge us-east-1 us-east-1c 3h
To check nodes with edge roles, run the following command:
$ oc get nodes -l node-role.kubernetes.io/edge
NAME STATUS ROLES AGE VERSION
ip-10-0-207-188.ec2.internal Ready edge,worker 172m v1.25.2+d2e245f
See About remote health monitoring for more information about the Telemetry service.