$ oc get mcp worker
There are times when you need to make changes to the operating systems running on OKD nodes. This can include changing settings for network time service, adding kernel arguments, or configuring journaling in a specific way.
Aside from a few specialized features, most changes to operating systems on OKD nodes can be done by creating what are referred to as MachineConfig
objects that are managed by the Machine Config Operator.
Tasks in this section describe how to use features of the Machine Config Operator to configure operating system features on OKD nodes.
NetworkManager stores new network configurations to Previously, NetworkManager stored new network configurations to |
OKD 4.14 integrates both operating system and cluster management. Because the cluster manages its own updates, including updates to Fedora CoreOS (FCOS) on cluster nodes, OKD provides an opinionated lifecycle management experience that simplifies the orchestration of node upgrades.
OKD employs three daemon sets and controllers to simplify node management. These daemon sets orchestrate operating system updates and configuration changes to the hosts by using standard Kubernetes-style constructs. They include:
The machine-config-controller
, which coordinates machine upgrades from the control
plane. It monitors all of the cluster nodes and orchestrates their configuration
updates.
The machine-config-daemon
daemon set, which runs on
each node in the cluster and updates a machine to configuration as defined by
machine config and as instructed by the MachineConfigController. When the node detects
a change, it drains off its pods, applies the update, and reboots. These changes
come in the form of Ignition configuration files that apply the specified
machine configuration and control kubelet configuration. The update itself is
delivered in a container. This process is key to the success of managing
OKD and FCOS updates together.
The machine-config-server
daemon set, which provides the Ignition config files
to control plane nodes as they join the cluster.
The machine configuration is a subset of the Ignition configuration. The
machine-config-daemon
reads the machine configuration to see if it needs to do
an OSTree update or if it must apply a series of systemd kubelet file changes,
configuration changes, or other changes to the operating system or OKD
configuration.
When you perform node management operations, you create or modify a
KubeletConfig
custom resource (CR).
When changes are made to a machine configuration, the Machine Config Operator (MCO) automatically reboots all corresponding nodes in order for the changes to take effect. To prevent the nodes from automatically rebooting after machine configuration changes, before making the changes, you must pause the autoreboot process by setting the The following modifications do not trigger a node reboot:
|
There might be situations where the configuration on a node does not fully match what the currently-applied machine config specifies. This state is called configuration drift. The Machine Config Daemon (MCD) regularly checks the nodes for configuration drift. If the MCD detects configuration drift, the MCO marks the node degraded
until an administrator corrects the node configuration. A degraded node is online and operational, but, it cannot be updated.
The Machine Config Operator (MCO) manages updates to systemd, CRI-O and Kubelet, the kernel, Network Manager and other system features. It also offers a MachineConfig
CRD that can write configuration files onto the host (see machine-config-operator). Understanding what the MCO does and how it interacts with other components is critical to making advanced, system-level changes to an OKD cluster. Here are some things you should know about the MCO, machine configs, and how they are used:
Machine configs are processed alphabetically, in lexicographically increasing order, of their name. The render controller uses the first machine config in the list as the base and appends the rest to the base machine config.
A machine config can make a specific change to a file or service on the operating system of each system representing a pool of OKD nodes.
MCO applies changes to operating systems in pools of machines. All OKD clusters start with worker and control plane node pools. By adding more role labels, you can configure custom pools of nodes. For example, you can set up a custom pool of worker nodes that includes particular hardware features needed by an application. However, examples in this section focus on changes to the default pool types.
A node can have multiple labels applied that indicate its type, such as |
After a machine config change, the MCO updates the affected nodes alphabetically by zone, based on the topology.kubernetes.io/zone
label. If a zone has more than one node, the oldest nodes are updated first. For nodes that do not use zones, such as in bare metal deployments, the nodes are upgraded by age, with the oldest nodes updated first. The MCO updates the number of nodes as specified by the maxUnavailable
field on the machine configuration pool at a time.
Some machine configuration must be in place before OKD is installed to disk. In most cases, this can be accomplished by creating a machine config that is injected directly into the OKD installer process, instead of running as a postinstallation machine config. In other cases, you might need to do bare metal installation where you pass kernel arguments at OKD installer startup, to do such things as setting per-node individual IP addresses or advanced disk partitioning.
MCO manages items that are set in machine configs. Manual changes you do to your systems will not be overwritten by MCO, unless MCO is explicitly told to manage a conflicting file. In other words, MCO only makes specific updates you request, it does not claim control over the whole node.
Manual changes to nodes are strongly discouraged. If you need to decommission a node and start a new one, those direct changes would be lost.
MCO is only supported for writing to files in /etc
and /var
directories, although there are symbolic links to some directories that can be writeable by being symbolically linked to one of those areas. The /opt
and /usr/local
directories are examples.
Ignition is the configuration format used in MachineConfigs. See the Ignition Configuration Specification v3.2.0 for details.
Although Ignition config settings can be delivered directly at OKD installation time, and are formatted in the same way that MCO delivers Ignition configs, MCO has no way of seeing what those original Ignition configs are. Therefore, you should wrap Ignition config settings into a machine config before deploying them.
When a file managed by MCO changes outside of MCO, the Machine Config Daemon (MCD) sets the node as degraded
. It will not overwrite the
offending file, however, and should continue to operate in a degraded
state.
A key reason for using a machine config is that it will be applied when you spin up new nodes for a pool in your OKD cluster. The machine-api-operator
provisions a new machine and MCO configures it.
MCO uses Ignition as the configuration format. OKD 4.6 moved from Ignition config specification version 2 to version 3.
The kinds of components that MCO can change include:
config: Create Ignition config objects (see the Ignition configuration specification) to do things like modify files, systemd services, and other features on OKD machines, including:
Configuration files: Create or overwrite files in the /var
or /etc
directory.
systemd units: Create and set the status of a systemd service or add to an existing systemd service by dropping in additional settings.
users and groups: Change SSH keys in the passwd section postinstallation.
|
kernelArguments: Add arguments to the kernel command line when OKD nodes boot.
kernelType: Optionally identify a non-standard kernel to use instead of the standard kernel. Use realtime
to use the RT kernel (for RAN). This is only supported on select platforms.
extensions: Extend FCOS features by adding selected pre-packaged software. For this feature, available extensions include usbguard and kernel modules.
Custom resources (for ContainerRuntime
and Kubelet
): Outside of machine configs, MCO manages two special custom resources for modifying CRI-O container runtime settings (ContainerRuntime
CR) and the Kubelet service (Kubelet
CR).
The MCO is not the only Operator that can change operating system components on OKD nodes. Other Operators can modify operating system-level features as well. One example is the Node Tuning Operator, which allows you to do node-level tuning through Tuned daemon profiles.
Tasks for the MCO configuration that can be done postinstallation are included in the following procedures. See descriptions of FCOS bare metal installation for system configuration tasks that must be done during or before OKD installation.
There might be situations where the configuration on a node does not fully match what the currently-applied machine config specifies. This state is called configuration drift. The Machine Config Daemon (MCD) regularly checks the nodes for configuration drift. If the MCD detects configuration drift, the MCO marks the node degraded
until an administrator corrects the node configuration. A degraded node is online and operational, but, it cannot be updated. For more information on configuration drift, see Understanding configuration drift detection.
See the openshift-machine-config-operator GitHub site for details.
When you use a machine config to change a system feature, such as adding new config files, modifying systemd units or kernel arguments, or updating SSH keys, the Machine Config Operator (MCO) applies those changes and ensures that each node is in the desired configuration state.
After you make the changes, the MCO generates a new rendered machine config. In the majority of cases, when applying the new rendered machine config, the Operator performs the following steps on each affected node until all of the affected nodes have the updated configuration:
Cordon. The MCO marks the node as not schedulable for additional workloads.
Drain. The MCO terminates all running workloads on the node, causing the workloads to be rescheduled onto other nodes.
Apply. The MCO writes the new configuration to the nodes as needed.
Reboot. The MCO restarts the node.
Uncordon. The MCO marks the node as schedulable for workloads.
Throughout this process, the MCO maintains the required number of pods based on the MaxUnavailable
value set in the machine config pool.
There are conditions which can prevent the MCO from draining a node. If the MCO fails to drain a node, the Operator will be unable to reboot the node, preventing any changes made to the node through a machine config. For more information and mitigation steps, see the MCCDrainError runbook. |
If the MCO drains pods on the master node, note the following conditions:
In single-node OpenShift clusters, the MCO skips the drain operation.
The MCO does not drain static pods in order to prevent interference with services, such as etcd.
In certain cases the nodes are not drained. For more information, see "About the Machine Config Operator." |
You can mitigate the disruption caused by drain and reboot cycles by disabling control plane reboots. For more information, see "Disabling the Machine Config Operator from automatically rebooting."
There might be situations when the on-disk state of a node differs from what is configured in the machine config. This is known as configuration drift. For example, a cluster admin might manually modify a file, a systemd unit file, or a file permission that was configured through a machine config. This causes configuration drift. Configuration drift can cause problems between nodes in a Machine Config Pool or when the machine configs are updated.
The Machine Config Operator (MCO) uses the Machine Config Daemon (MCD) to check nodes for configuration drift on a regular basis. If detected, the MCO sets the node and the machine config pool (MCP) to Degraded
and reports the error. A degraded node is online and operational, but, it cannot be updated.
The MCD performs configuration drift detection upon each of the following conditions:
When a node boots.
After any of the files (Ignition files and systemd drop-in units) specified in the machine config are modified outside of the machine config.
Before a new machine config is applied.
If you apply a new machine config to the nodes, the MCD temporarily shuts down configuration drift detection. This shutdown is needed because the new machine config necessarily differs from the machine config on the nodes. After the new machine config is applied, the MCD restarts detecting configuration drift using the new machine config. |
When performing configuration drift detection, the MCD validates that the file contents and permissions fully match what the currently-applied machine config specifies. Typically, the MCD detects configuration drift in less than a second after the detection is triggered.
If the MCD detects configuration drift, the MCD performs the following tasks:
Emits an error to the console logs
Emits a Kubernetes event
Stops further detection on the node
Sets the node and MCP to degraded
You can check if you have a degraded node by listing the MCPs:
$ oc get mcp worker
If you have a degraded MCP, the DEGRADEDMACHINECOUNT
field is non-zero, similar to the following output:
NAME CONFIG UPDATED UPDATING DEGRADED MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT AGE
worker rendered-worker-404caf3180818d8ac1f50c32f14b57c3 False True True 2 1 1 1 5h51m
You can determine if the problem is caused by configuration drift by examining the machine config pool:
$ oc describe mcp worker
...
Last Transition Time: 2021-12-20T18:54:00Z
Message: Node ci-ln-j4h8nkb-72292-pxqxz-worker-a-fjks4 is reporting: "content mismatch for file \"/etc/mco-test-file\"" (1)
Reason: 1 nodes are reporting degraded status on sync
Status: True
Type: NodeDegraded (2)
...
1 | This message shows that a node’s /etc/mco-test-file file, which was added by the machine config, has changed outside of the machine config. |
2 | The state of the node is NodeDegraded . |
Or, if you know which node is degraded, examine that node:
$ oc describe node/ci-ln-j4h8nkb-72292-pxqxz-worker-a-fjks4
...
Annotations: cloud.network.openshift.io/egress-ipconfig: [{"interface":"nic0","ifaddr":{"ipv4":"10.0.128.0/17"},"capacity":{"ip":10}}]
csi.volume.kubernetes.io/nodeid:
{"pd.csi.storage.gke.io":"projects/openshift-gce-devel-ci/zones/us-central1-a/instances/ci-ln-j4h8nkb-72292-pxqxz-worker-a-fjks4"}
machine.openshift.io/machine: openshift-machine-api/ci-ln-j4h8nkb-72292-pxqxz-worker-a-fjks4
machineconfiguration.openshift.io/controlPlaneTopology: HighlyAvailable
machineconfiguration.openshift.io/currentConfig: rendered-worker-67bd55d0b02b0f659aef33680693a9f9
machineconfiguration.openshift.io/desiredConfig: rendered-worker-67bd55d0b02b0f659aef33680693a9f9
machineconfiguration.openshift.io/reason: content mismatch for file "/etc/mco-test-file" (1)
machineconfiguration.openshift.io/state: Degraded (2)
...
1 | The error message indicating that configuration drift was detected between the node and the listed machine config. Here the error message indicates that the contents of the /etc/mco-test-file , which was added by the machine config, has changed outside of the machine config. |
2 | The state of the node is Degraded . |
You can correct configuration drift and return the node to the Ready
state by performing one of the following remediations:
Ensure that the contents and file permissions of the files on the node match what is configured in the machine config. You can manually rewrite the file contents or change the file permissions.
Generate a force file on the degraded node. The force file causes the MCD to bypass the usual configuration drift detection and reapplies the current machine config.
Generating a force file on a node causes that node to reboot. |
To see the status of the Machine Config Operator (MCO), its sub-components, and the resources it manages, use the following oc
commands:
To see the number of MCO-managed nodes available on your cluster for each machine config pool (MCP), run the following command:
$ oc get machineconfigpool
NAME CONFIG UPDATED UPDATING DEGRADED MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT AGE
master rendered-master-06c9c4… True False False 3 3 3 0 4h42m
worker rendered-worker-f4b64… False True False 3 2 2 0 4h42m
where:
The True
status indicates that the MCO has applied the current machine config to the nodes in that MCP. The current machine config is specified in the STATUS
field in the oc get mcp
output. The False
status indicates a node in the MCP is updating.
The True
status indicates that the MCO is applying the desired machine config, as specified in the MachineConfigPool
custom resource, to at least one of the nodes in that MCP. The desired machine config is the new, edited machine config. Nodes that are updating might not be available for scheduling. The False
status indicates that all nodes in the MCP are updated.
A True
status indicates the MCO is blocked from applying the current or desired machine config to at least one of the nodes in that MCP, or the configuration is failing. Nodes that are degraded might not be available for scheduling. A False
status indicates that all nodes in the MCP are ready.
Indicates the total number of machines in that MCP.
Indicates the total number of machines in that MCP that are ready for scheduling.
Indicates the total number of machines in that MCP that have the current machine config.
Indicates the total number of machines in that MCP that are marked as degraded or unreconcilable.
In the previous output, there are three control plane (master) nodes and three worker nodes. The control plane MCP and the associated nodes are updated to the current machine config. The nodes in the worker MCP are being updated to the desired machine config. Two of the nodes in the worker MCP are updated and one is still updating, as indicated by the UPDATEDMACHINECOUNT
being 2
. There are no issues, as indicated by the DEGRADEDMACHINECOUNT
being 0
and DEGRADED
being False
.
While the nodes in the MCP are updating, the machine config listed under CONFIG
is the current machine config, which the MCP is being updated from. When the update is complete, the listed machine config is the desired machine config, which the MCP was updated to.
If a node is being cordoned, that node is not included in the Example output
|
To check the status of the nodes in an MCP by examining the MachineConfigPool
custom resource, run the following command:
:
$ oc describe mcp worker
...
Degraded Machine Count: 0
Machine Count: 3
Observed Generation: 2
Ready Machine Count: 3
Unavailable Machine Count: 0
Updated Machine Count: 3
Events: <none>
If a node is being cordoned, the node is not included in the Example output
|
To see each existing MachineConfig
object, run the following command:
$ oc get machineconfigs
NAME GENERATEDBYCONTROLLER IGNITIONVERSION AGE
00-master 2c9371fbb673b97a6fe8b1c52... 3.2.0 5h18m
00-worker 2c9371fbb673b97a6fe8b1c52... 3.2.0 5h18m
01-master-container-runtime 2c9371fbb673b97a6fe8b1c52... 3.2.0 5h18m
01-master-kubelet 2c9371fbb673b97a6fe8b1c52… 3.2.0 5h18m
...
rendered-master-dde... 2c9371fbb673b97a6fe8b1c52... 3.2.0 5h18m
rendered-worker-fde... 2c9371fbb673b97a6fe8b1c52... 3.2.0 5h18m
Note that the MachineConfig
objects listed as rendered
are not meant to be changed or deleted.
To view the contents of a particular machine config (in this case, 01-master-kubelet
), run the following command:
$ oc describe machineconfigs 01-master-kubelet
The output from the command shows that this MachineConfig
object contains both configuration files (cloud.conf
and kubelet.conf
) and a systemd service (Kubernetes Kubelet):
Name: 01-master-kubelet
...
Spec:
Config:
Ignition:
Version: 3.2.0
Storage:
Files:
Contents:
Source: data:,
Mode: 420
Overwrite: true
Path: /etc/kubernetes/cloud.conf
Contents:
Source: data:,kind%3A%20KubeletConfiguration%0AapiVersion%3A%20kubelet.config.k8s.io%2Fv1beta1%0Aauthentication%3A%0A%20%20x509%3A%0A%20%20%20%20clientCAFile%3A%20%2Fetc%2Fkubernetes%2Fkubelet-ca.crt%0A%20%20anonymous...
Mode: 420
Overwrite: true
Path: /etc/kubernetes/kubelet.conf
Systemd:
Units:
Contents: [Unit]
Description=Kubernetes Kubelet
Wants=rpc-statd.service network-online.target crio.service
After=network-online.target crio.service
ExecStart=/usr/bin/hyperkube \
kubelet \
--config=/etc/kubernetes/kubelet.conf \ ...
If something goes wrong with a machine config that you apply, you can always back out that change. For example, if you had run oc create -f ./myconfig.yaml
to apply a machine config, you could remove that machine config by running the following command:
$ oc delete -f ./myconfig.yaml
If that was the only problem, the nodes in the affected pool should return to a non-degraded state. This actually causes the rendered configuration to roll back to its previously rendered state.
If you add your own machine configs to your cluster, you can use the commands shown in the previous example to check their status and the related status of the pool to which they are applied.
The following certificates are handled in the cluster by the Machine Config Controller (MCC) and can be found in the ControllerConfig
resource:
/etc/kubernetes/kubelet-ca.crt
/etc/kubernetes/static-pod-resources/configmaps/cloud-config/ca-bundle.pem
/etc/pki/ca-trust/source/anchors/openshift-config-user-ca-bundle.crt
The MCC also handles the image registry certificates and its associated user bundle certificate.
You can get information about the listed certificates, including the underyling bundle the certificate comes from, and the signing and subject data.
This procedure contains optional steps that require that the python-yq
RPM package is installed.
Get detailed certificate information by running the following command:
$ oc get controllerconfig/machine-config-controller -o yaml | yq -y '.status.controllerCertificates'
- bundleFile: KubeAPIServerServingCAData
notAfter: '2034-10-23T13:13:02Z'
notBefore: '2024-10-25T13:13:02Z'
signer: CN=admin-kubeconfig-signer,OU=openshift
subject: CN=admin-kubeconfig-signer,OU=openshift
- bundleFile: KubeAPIServerServingCAData
notAfter: '2024-10-26T13:13:05Z'
notBefore: '2024-10-25T13:27:14Z'
signer: CN=kubelet-signer,OU=openshift
subject: CN=kube-csr-signer_@1729862835
- bundleFile: KubeAPIServerServingCAData
notAfter: '2024-10-26T13:13:05Z'
notBefore: '2024-10-25T13:13:05Z'
signer: CN=kubelet-signer,OU=openshift
subject: CN=kubelet-signer,OU=openshift
# ...
Get a simpler version of the information found in the ControllerConfig
resource by checking the machine config pool status using the following command:
$ oc get mcp master -o yaml | yq -y '.status.certExpirys'
- bundle: KubeAPIServerServingCAData
expiry: '2034-10-23T13:13:02Z'
subject: CN=admin-kubeconfig-signer,OU=openshift
- bundle: KubeAPIServerServingCAData
expiry: '2024-10-26T13:13:05Z'
subject: CN=kube-csr-signer_@1729862835
- bundle: KubeAPIServerServingCAData
expiry: '2024-10-26T13:13:05Z'
subject: CN=kubelet-signer,OU=openshift
- bundle: KubeAPIServerServingCAData
expiry: '2025-10-25T13:13:05Z'
subject: CN=kube-apiserver-to-kubelet-signer,OU=openshift
# ...
This method is meant for OKD applications that already consume machine config pool information.
Check which image registry certificates are on the nodes:
Log in to a node:
$ oc debug node/<node_name>
Set /host
as the root directory within the debug shell:
sh-5.1# chroot /host
Look at the contents of the /etc/docker/cert.d
directory:
sh-5.1# ls /etc/docker/certs.d
image-registry.openshift-image-registry.svc.cluster.local:5000
image-registry.openshift-image-registry.svc:5000
You can use the tasks in this section to create MachineConfig
objects that modify files, systemd unit files, and other operating system features running on OKD nodes. For more ideas on working with machine configs, see content related to updating SSH authorized keys, verifying image signatures, enabling SCTP, and configuring iSCSI initiatornames for OKD.
OKD supports Ignition specification version 3.2. All new machine configs you create going forward should be based on Ignition specification version 3.2. If you are upgrading your OKD cluster, any existing Ignition specification version 2.x machine configs will be translated automatically to specification version 3.2.
There might be situations where the configuration on a node does not fully match what the currently-applied machine config specifies. This state is called configuration drift. The Machine Config Daemon (MCD) regularly checks the nodes for configuration drift. If the MCD detects configuration drift, the MCO marks the node degraded
until an administrator corrects the node configuration. A degraded node is online and operational, but, it cannot be updated. For more information on configuration drift, see Understanding configuration drift detection.
Use the following "Configuring chrony time service" procedure as a model for how to go about adding other configuration files to OKD nodes. |
You
can
set the time server and related settings used by the chrony time service (chronyd
)
by modifying the contents of the chrony.conf
file and passing those contents
to your nodes as a machine config.
Create a Butane config including the contents of the chrony.conf
file. For example, to configure chrony on worker nodes, create a 99-worker-chrony.bu
file.
See "Creating machine configs with Butane" for information about Butane. |
variant: openshift
version: 4.14.0
metadata:
name: 99-worker-chrony (1)
labels:
machineconfiguration.openshift.io/role: worker (1)
storage:
files:
- path: /etc/chrony.conf
mode: 0644 (2)
overwrite: true
contents:
inline: |
pool 0.rhel.pool.ntp.org iburst (3)
driftfile /var/lib/chrony/drift
makestep 1.0 3
rtcsync
logdir /var/log/chrony
1 | On control plane nodes, substitute master for worker in both of these locations. |
2 | Specify an octal value mode for the mode field in the machine config file. After creating the file and applying the changes, the mode is converted to a decimal value. You can check the YAML file with the command oc get mc <mc-name> -o yaml . |
3 | Specify any valid, reachable time source, such as the one provided by your DHCP server.
Alternately, you can specify any of the following NTP servers: 1.rhel.pool.ntp.org , 2.rhel.pool.ntp.org , or 3.rhel.pool.ntp.org . |
Use Butane to generate a MachineConfig
object file, 99-worker-chrony.yaml
, containing the configuration to be delivered to the nodes:
$ butane 99-worker-chrony.bu -o 99-worker-chrony.yaml
Apply the configurations in one of two ways:
If the cluster is not running yet, after you generate manifest files, add the MachineConfig
object file to the <installation_directory>/openshift
directory, and then continue to create the cluster.
If the cluster is already running, apply the file:
$ oc apply -f ./99-worker-chrony.yaml
You can disable the chrony time service (chronyd
) for nodes with a specific role by using a MachineConfig
custom resource (CR).
Install the OpenShift CLI (oc
).
Log in as a user with cluster-admin
privileges.
Create the MachineConfig
CR that disables chronyd
for the specified node role.
Save the following YAML in the disable-chronyd.yaml
file:
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: <node_role> (1)
name: disable-chronyd
spec:
config:
ignition:
version: 3.2.0
systemd:
units:
- contents: |
[Unit]
Description=NTP client/server
Documentation=man:chronyd(8) man:chrony.conf(5)
After=ntpdate.service sntp.service ntpd.service
Conflicts=ntpd.service systemd-timesyncd.service
ConditionCapability=CAP_SYS_TIME
[Service]
Type=forking
PIDFile=/run/chrony/chronyd.pid
EnvironmentFile=-/etc/sysconfig/chronyd
ExecStart=/usr/sbin/chronyd $OPTIONS
ExecStartPost=/usr/libexec/chrony-helper update-daemon
PrivateTmp=yes
ProtectHome=yes
ProtectSystem=full
[Install]
WantedBy=multi-user.target
enabled: false
name: "chronyd.service"
1 | Node role where you want to disable chronyd , for example, master . |
Create the MachineConfig
CR by running the following command:
$ oc create -f disable-chronyd.yaml
In some special cases, you might want to add kernel arguments to a set of nodes in your cluster. This should only be done with caution and clear understanding of the implications of the arguments you set.
Improper use of kernel arguments can result in your systems becoming unbootable. |
Examples of kernel arguments you could set include:
nosmt: Disables symmetric multithreading (SMT) in the kernel. Multithreading allows multiple logical threads for each CPU. You could consider nosmt
in multi-tenant environments to reduce risks from potential cross-thread attacks. By disabling SMT, you essentially choose security over performance.
systemd.unified_cgroup_hierarchy: Configures the version of Linux control group that is installed on your nodes: cgroup v1 or cgroup v2. cgroup v2 is the next version of the kernel control group and offers multiple improvements. However, it can have some unwanted effects on your nodes.
cgroup v2 is enabled by default. To disable cgroup v2, use the |
enforcing=0: Configures Security Enhanced Linux (SELinux) to run in permissive mode. In permissive mode, the system acts as if SELinux is enforcing the loaded security policy, including labeling objects and emitting access denial entries in the logs, but it does not actually deny any operations. While not supported for production systems, permissive mode can be helpful for debugging.
Disabling SELinux on FCOS in production is not supported. Once SELinux has been disabled on a node, it must be re-provisioned before re-inclusion in a production cluster. |
See Kernel.org kernel parameters for a list and descriptions of kernel arguments.
In the following procedure, you create a MachineConfig
object that identifies:
A set of machines to which you want to add the kernel argument. In this case, machines with a worker role.
Kernel arguments that are appended to the end of the existing kernel arguments.
A label that indicates where in the list of machine configs the change is applied.
Have administrative privilege to a working OKD cluster.
List existing MachineConfig
objects for your OKD cluster to determine how to
label your machine config:
$ oc get MachineConfig
NAME GENERATEDBYCONTROLLER IGNITIONVERSION AGE
00-master 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
00-worker 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
01-master-container-runtime 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
01-master-kubelet 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
01-worker-container-runtime 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
01-worker-kubelet 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
99-master-generated-registries 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
99-master-ssh 3.2.0 40m
99-worker-generated-registries 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
99-worker-ssh 3.2.0 40m
rendered-master-23e785de7587df95a4b517e0647e5ab7 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
rendered-worker-5d596d9293ca3ea80c896a1191735bb1 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
Create a MachineConfig
object file that identifies the kernel argument (for example, 05-worker-kernelarg-selinuxpermissive.yaml
)
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: worker (1)
name: 05-worker-kernelarg-selinuxpermissive (2)
spec:
config:
ignition:
version: 3.2.0
kernelArguments:
- enforcing=0 (3)
systemd.unified_cgroup_hierarchy=0 (4)
#...
1 | Applies the new kernel argument only to worker nodes. |
2 | Named to identify where it fits among the machine configs (05) and what it does (adds a kernel argument to configure SELinux permissive mode). |
3 | Identifies the exact kernel argument as enforcing=0 . |
4 | Configures cgroup v1 on the associated nodes. cgroup v2 is the default. |
Create the new machine config:
$ oc create -f 05-worker-kernelarg-selinuxpermissive.yaml
Check the machine configs to see that the new one was added:
$ oc get MachineConfig
NAME GENERATEDBYCONTROLLER IGNITIONVERSION AGE
00-master 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
00-worker 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
01-master-container-runtime 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
01-master-kubelet 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
01-worker-container-runtime 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
01-worker-kubelet 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
05-worker-kernelarg-selinuxpermissive 3.2.0 105s
99-master-generated-registries 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
99-master-ssh 3.2.0 40m
99-worker-generated-registries 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
99-worker-ssh 3.2.0 40m
rendered-master-23e785de7587df95a4b517e0647e5ab7 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
rendered-worker-5d596d9293ca3ea80c896a1191735bb1 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
Check the nodes:
$ oc get nodes
NAME STATUS ROLES AGE VERSION
ip-10-0-136-161.ec2.internal Ready worker 28m v1.27.3
ip-10-0-136-243.ec2.internal Ready master 34m v1.27.3
ip-10-0-141-105.ec2.internal Ready,SchedulingDisabled worker 28m v1.27.3
ip-10-0-142-249.ec2.internal Ready master 34m v1.27.3
ip-10-0-153-11.ec2.internal Ready worker 28m v1.27.3
ip-10-0-153-150.ec2.internal Ready master 34m v1.27.3
You can see that scheduling on each worker node is disabled as the change is being applied.
Check that the kernel argument worked by going to one of the worker nodes and listing
the kernel command line arguments (in /proc/cmdline
on the host):
$ oc debug node/ip-10-0-141-105.ec2.internal
Starting pod/ip-10-0-141-105ec2internal-debug ...
To use host binaries, run `chroot /host`
sh-4.2# cat /host/proc/cmdline
BOOT_IMAGE=/ostree/rhcos-... console=tty0 console=ttyS0,115200n8
rootflags=defaults,prjquota rw root=UUID=fd0... ostree=/ostree/boot.0/rhcos/16...
coreos.oem.id=qemu coreos.oem.id=ec2 ignition.platform.id=ec2 enforcing=0
sh-4.2# exit
You should see the enforcing=0
argument added to the other kernel arguments.
Fedora CoreOS (FCOS) supports multipathing on the primary disk, allowing stronger resilience to hardware failure to achieve higher host availability. Postinstallation support is available by activating multipathing via the machine config.
Enabling multipathing during installation is supported and recommended for nodes provisioned in OKD 4.8 or higher. In setups where any I/O to non-optimized paths results in I/O system errors, you must enable multipathing at installation time. For more information about enabling multipathing during installation time, see "Enabling multipathing with kernel arguments on RHCOS" in the Installing on bare metal documentation. |
On IBM Z® and IBM® LinuxONE, you can enable multipathing only if you configured your cluster for it during installation. For more information, see "Installing FCOS and starting the OKD bootstrap process" in Installing a cluster with z/VM on IBM Z® and IBM® LinuxONE. |
When a OKD 4.14 cluster is installed or configured as a post-installation activity on a single VIOS host with "vSCSI" storage on IBM Power® with multipath configured, the CoreOS nodes with multipath enabled fail to boot. This behavior is expected, as only one path is available to the Node. |
You have a running OKD cluster that uses version 4.7 or later.
You are logged in to the cluster as a user with administrative privileges.
You have confirmed that the disk is enabled for multipathing. Multipathing is only supported on hosts that are connected to a SAN via an HBA adapter.
To enable multipathing postinstallation on control plane nodes:
Create a machine config file, such as 99-master-kargs-mpath.yaml
, that instructs the cluster to add the master
label and that identifies the multipath kernel argument, for example:
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: "master"
name: 99-master-kargs-mpath
spec:
kernelArguments:
- 'rd.multipath=default'
- 'root=/dev/disk/by-label/dm-mpath-root'
To enable multipathing postinstallation on worker nodes:
Create a machine config file, such as 99-worker-kargs-mpath.yaml
, that instructs the cluster to add the worker
label and that identifies the multipath kernel argument, for example:
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: "worker"
name: 99-worker-kargs-mpath
spec:
kernelArguments:
- 'rd.multipath=default'
- 'root=/dev/disk/by-label/dm-mpath-root'
Create the new machine config by using either the master or worker YAML file you previously created:
$ oc create -f ./99-worker-kargs-mpath.yaml
Check the machine configs to see that the new one was added:
$ oc get MachineConfig
NAME GENERATEDBYCONTROLLER IGNITIONVERSION AGE
00-master 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
00-worker 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
01-master-container-runtime 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
01-master-kubelet 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
01-worker-container-runtime 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
01-worker-kubelet 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
99-master-generated-registries 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
99-master-ssh 3.2.0 40m
99-worker-generated-registries 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
99-worker-kargs-mpath 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 105s
99-worker-ssh 3.2.0 40m
rendered-master-23e785de7587df95a4b517e0647e5ab7 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
rendered-worker-5d596d9293ca3ea80c896a1191735bb1 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.2.0 33m
Check the nodes:
$ oc get nodes
NAME STATUS ROLES AGE VERSION
ip-10-0-136-161.ec2.internal Ready worker 28m v1.27.3
ip-10-0-136-243.ec2.internal Ready master 34m v1.27.3
ip-10-0-141-105.ec2.internal Ready,SchedulingDisabled worker 28m v1.27.3
ip-10-0-142-249.ec2.internal Ready master 34m v1.27.3
ip-10-0-153-11.ec2.internal Ready worker 28m v1.27.3
ip-10-0-153-150.ec2.internal Ready master 34m v1.27.3
You can see that scheduling on each worker node is disabled as the change is being applied.
Check that the kernel argument worked by going to one of the worker nodes and listing
the kernel command line arguments (in /proc/cmdline
on the host):
$ oc debug node/ip-10-0-141-105.ec2.internal
Starting pod/ip-10-0-141-105ec2internal-debug ...
To use host binaries, run `chroot /host`
sh-4.2# cat /host/proc/cmdline
...
rd.multipath=default root=/dev/disk/by-label/dm-mpath-root
...
sh-4.2# exit
You should see the added kernel arguments.
See Enabling multipathing with kernel arguments on RHCOS for more information about enabling multipathing during installation time.
Some OKD workloads require a high degree of determinism.While Linux is not a real-time operating system, the Linux real-time kernel includes a preemptive scheduler that provides the operating system with real-time characteristics.
If your OKD workloads require these real-time characteristics, you can switch your machines to the Linux real-time kernel. For OKD, 4.14 you can make this switch using a MachineConfig
object. Although making the change is as simple as changing a machine config kernelType
setting to realtime
, there are a few other considerations before making the change:
Currently, real-time kernel is supported only on worker nodes, and only for radio access network (RAN) use.
The following procedure is fully supported with bare metal installations that use systems that are certified for Red Hat Enterprise Linux for Real Time 8.
Real-time support in OKD is limited to specific subscriptions.
The following procedure is also supported for use with Google Cloud Platform.
Have a running OKD cluster (version 4.4 or later).
Log in to the cluster as a user with administrative privileges.
Create a machine config for the real-time kernel: Create a YAML file (for example, 99-worker-realtime.yaml
) that contains a MachineConfig
object for the realtime
kernel type. This example tells the cluster to use a real-time kernel for all worker nodes:
$ cat << EOF > 99-worker-realtime.yaml
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: "worker"
name: 99-worker-realtime
spec:
kernelType: realtime
EOF
Add the machine config to the cluster. Type the following to add the machine config to the cluster:
$ oc create -f 99-worker-realtime.yaml
Check the real-time kernel: Once each impacted node reboots, log in to the cluster and run the following commands to make sure that the real-time kernel has replaced the regular kernel for the set of nodes you configured:
$ oc get nodes
NAME STATUS ROLES AGE VERSION
ip-10-0-143-147.us-east-2.compute.internal Ready worker 103m v1.27.3
ip-10-0-146-92.us-east-2.compute.internal Ready worker 101m v1.27.3
ip-10-0-169-2.us-east-2.compute.internal Ready worker 102m v1.27.3
$ oc debug node/ip-10-0-143-147.us-east-2.compute.internal
Starting pod/ip-10-0-143-147us-east-2computeinternal-debug ...
To use host binaries, run `chroot /host`
sh-4.4# uname -a
Linux <worker_node> 4.18.0-147.3.1.rt24.96.el8_1.x86_64 #1 SMP PREEMPT RT
Wed Nov 27 18:29:55 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux
The kernel name contains rt
and text “PREEMPT RT” indicates that this is a real-time kernel.
To go back to the regular kernel, delete the MachineConfig
object:
$ oc delete -f 99-worker-realtime.yaml
If you need to configure settings for the journald
service on OKD nodes, you can do that by modifying the appropriate configuration file and passing the file to the appropriate pool of nodes as a machine config.
This procedure describes how to modify journald
rate limiting settings in the /etc/systemd/journald.conf
file and apply them to worker nodes. See the journald.conf
man page for information on how to use that file.
Have a running OKD cluster.
Log in to the cluster as a user with administrative privileges.
Create a Butane config file, 40-worker-custom-journald.bu
, that includes an /etc/systemd/journald.conf
file with the required settings.
See "Creating machine configs with Butane" for information about Butane. |
variant: openshift
version: 4.14.0
metadata:
name: 40-worker-custom-journald
labels:
machineconfiguration.openshift.io/role: worker
storage:
files:
- path: /etc/systemd/journald.conf
mode: 0644
overwrite: true
contents:
inline: |
# Disable rate limiting
RateLimitInterval=1s
RateLimitBurst=10000
Storage=volatile
Compress=no
MaxRetentionSec=30s
Use Butane to generate a MachineConfig
object file, 40-worker-custom-journald.yaml
, containing the configuration to be delivered to the worker nodes:
$ butane 40-worker-custom-journald.bu -o 40-worker-custom-journald.yaml
Apply the machine config to the pool:
$ oc apply -f 40-worker-custom-journald.yaml
Check that the new machine config is applied and that the nodes are not in a degraded state. It might take a few minutes. The worker pool will show the updates in progress, as each node successfully has the new machine config applied:
$ oc get machineconfigpool
NAME CONFIG UPDATED UPDATING DEGRADED MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT AGE
master rendered-master-35 True False False 3 3 3 0 34m
worker rendered-worker-d8 False True False 3 1 1 0 34m
To check that the change was applied, you can log in to a worker node:
$ oc get node | grep worker
ip-10-0-0-1.us-east-2.compute.internal Ready worker 39m v0.0.0-master+$Format:%h$
$ oc debug node/ip-10-0-0-1.us-east-2.compute.internal
Starting pod/ip-10-0-141-142us-east-2computeinternal-debug ...
...
sh-4.2# chroot /host
sh-4.4# cat /etc/systemd/journald.conf
# Disable rate limiting
RateLimitInterval=1s
RateLimitBurst=10000
Storage=volatile
Compress=no
MaxRetentionSec=30s
sh-4.4# exit
FCOS is a minimal container-oriented RHEL operating system, designed to provide a common set of capabilities to OKD clusters across all platforms. While adding software packages to FCOS systems is generally discouraged, the MCO provides an extensions
feature you can use to add a minimal set of features to FCOS nodes.
Currently, the following extensions are available:
usbguard: Adding the usbguard
extension protects FCOS systems from attacks from intrusive USB devices. See USBGuard for details.
kerberos: Adding the kerberos
extension provides a mechanism that allows both users and machines to identify themselves to the network to receive defined, limited access to the areas and services that an administrator has configured. See Using Kerberos for details, including how to set up a Kerberos client and mount a Kerberized NFS share.
The following procedure describes how to use a machine config to add one or more extensions to your FCOS nodes.
Have a running OKD cluster (version 4.6 or later).
Log in to the cluster as a user with administrative privileges.
Create a machine config for extensions: Create a YAML file (for example, 80-extensions.yaml
) that contains a MachineConfig
extensions
object. This example tells the cluster to add the usbguard
extension.
$ cat << EOF > 80-extensions.yaml
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: worker
name: 80-worker-extensions
spec:
config:
ignition:
version: 3.2.0
extensions:
- usbguard
EOF
Add the machine config to the cluster. Type the following to add the machine config to the cluster:
$ oc create -f 80-extensions.yaml
This sets all worker nodes to have rpm packages for usbguard
installed.
Check that the extensions were applied:
$ oc get machineconfig 80-worker-extensions
NAME GENERATEDBYCONTROLLER IGNITIONVERSION AGE
80-worker-extensions 3.2.0 57s
Check that the new machine config is now applied and that the nodes are not in a degraded state. It may take a few minutes. The worker pool will show the updates in progress, as each machine successfully has the new machine config applied:
$ oc get machineconfigpool
NAME CONFIG UPDATED UPDATING DEGRADED MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT AGE
master rendered-master-35 True False False 3 3 3 0 34m
worker rendered-worker-d8 False True False 3 1 1 0 34m
Check the extensions. To check that the extension was applied, run:
$ oc get node | grep worker
NAME STATUS ROLES AGE VERSION
ip-10-0-169-2.us-east-2.compute.internal Ready worker 102m v1.27.3
$ oc debug node/ip-10-0-169-2.us-east-2.compute.internal
...
To use host binaries, run `chroot /host`
sh-4.4# chroot /host
sh-4.4# rpm -q usbguard
usbguard-0.7.4-4.el8.x86_64.rpm
Because the default location for firmware blobs in /usr/lib
is read-only, you can locate a custom firmware blob by updating the search path. This enables you to load local firmware blobs in the machine config manifest when the blobs are not managed by FCOS.
Create a Butane config file, 98-worker-firmware-blob.bu
, that updates the search path so that it is root-owned and writable to local storage. The following example places the custom blob file from your local workstation onto nodes under /var/lib/firmware
.
See "Creating machine configs with Butane" for information about Butane. |
variant: openshift
version: 4.14.0
metadata:
labels:
machineconfiguration.openshift.io/role: worker
name: 98-worker-firmware-blob
storage:
files:
- path: /var/lib/firmware/<package_name> (1)
contents:
local: <package_name> (2)
mode: 0644 (3)
openshift:
kernel_arguments:
- 'firmware_class.path=/var/lib/firmware' (4)
1 | Sets the path on the node where the firmware package is copied to. |
2 | Specifies a file with contents that are read from a local file directory on the system running Butane. The path of the local file is relative to a files-dir directory, which must be specified by using the --files-dir option with Butane in the following step. |
3 | Sets the permissions for the file on the FCOS node. It is recommended to set 0644 permissions. |
4 | The firmware_class.path parameter customizes the kernel search path of where to look for the custom firmware blob that was copied from your local workstation onto the root file system of the node. This example uses /var/lib/firmware as the customized path. |
Run Butane to generate a MachineConfig
object file that uses a copy of the firmware blob on your local workstation named 98-worker-firmware-blob.yaml
. The firmware blob contains the configuration to be delivered to the nodes. The following example uses the --files-dir
option to specify the directory on your workstation where the local file or files are located:
$ butane 98-worker-firmware-blob.bu -o 98-worker-firmware-blob.yaml --files-dir <directory_including_package_name>
Apply the configurations to the nodes in one of two ways:
If the cluster is not running yet, after you generate manifest files, add the MachineConfig
object file to the <installation_directory>/openshift
directory, and then continue to create the cluster.
If the cluster is already running, apply the file:
$ oc apply -f 98-worker-firmware-blob.yaml
A MachineConfig
object YAML file is created for you to finish configuring your machines.
Save the Butane config in case you need to update the MachineConfig
object in the future.
By default, Fedora CoreOS (FCOS) creates a user named core
on the nodes in your cluster. You can use the core
user to access the node through a cloud provider serial console or a bare metal baseboard controller manager (BMC). This can be helpful, for example, if a node is down and you cannot access that node by using SSH or the oc debug node
command. However, by default, there is no password for this user, so you cannot log in without creating one.
You can create a password for the core
user by using a machine config. The Machine Config Operator (MCO) assigns the password and injects the password into the /etc/shadow
file, allowing you to log in with the core
user. The MCO does not examine the password hash. As such, the MCO cannot report if there is a problem with the password.
|
You can change the password, if needed, by editing the machine config you used to create the password. Also, you can remove the password by deleting the machine config. Deleting the machine config does not remove the user account.
Using a tool that is supported by your operating system, create a hashed password. For example, create a hashed password using mkpasswd
by running the following command:
$ mkpasswd -m SHA-512 testpass
$ $6$CBZwA6s6AVFOtiZe$aUKDWpthhJEyR3nnhM02NM1sKCpHn9XN.NPrJNQ3HYewioaorpwL3mKGLxvW0AOb4pJxqoqP4nFX77y0p00.8.
Create a machine config file that contains the core
username and the hashed password:
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: worker
name: set-core-user-password
spec:
config:
ignition:
version: 3.2.0
passwd:
users:
- name: core (1)
passwordHash: <password> (2)
1 | This must be core . |
2 | The hashed password to use with the core account. |
Create the machine config by running the following command:
$ oc create -f <file-name>.yaml
The nodes do not reboot and should become available in a few moments. You can use the oc get mcp
to watch for the machine config pools to be updated, as shown in the following example:
NAME CONFIG UPDATED UPDATING DEGRADED MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT AGE master rendered-master-d686a3ffc8fdec47280afec446fce8dd True False False 3 3 3 0 64m worker rendered-worker-4605605a5b1f9de1d061e9d350f251e5 False True False 3 0 0 0 64m
After the nodes return to the UPDATED=True
state, start a debug session for a node by running the following command:
$ oc debug node/<node_name>
Set /host
as the root directory within the debug shell by running the following command:
sh-4.4# chroot /host
Check the contents of the /etc/shadow
file:
...
core:$6$2sE/010goDuRSxxv$o18K52wor.wIwZp:19418:0:99999:7:::
...
The hashed password is assigned to the core
user.
Besides managing MachineConfig
objects, the MCO manages two custom resources (CRs): KubeletConfig
and ContainerRuntimeConfig
. Those CRs let you change node-level settings impacting how the Kubelet and CRI-O container runtime services behave.
The kubelet configuration is currently serialized as an Ignition configuration, so it can be directly edited. However, there is also a new kubelet-config-controller
added to the Machine Config Controller (MCC). This lets you use a KubeletConfig
custom resource (CR) to edit the kubelet parameters.
As the fields in the |
Consider the following guidance:
Edit an existing KubeletConfig
CR to modify existing settings or add new settings, instead of creating a CR for each change. It is recommended that you create a CR only to modify a different machine config pool, or for changes that are intended to be temporary, so that you can revert the changes.
Create one KubeletConfig
CR for each machine config pool with all the config changes you want for that pool.
As needed, create multiple KubeletConfig
CRs with a limit of 10 per cluster. For the first KubeletConfig
CR, the Machine Config Operator (MCO) creates a machine config appended with kubelet
. With each subsequent CR, the controller creates another kubelet
machine config with a numeric suffix. For example, if you have a kubelet
machine config with a -2
suffix, the next kubelet
machine config is appended with -3
.
If you are applying a kubelet or container runtime config to a custom machine config pool, the custom role in the For example, because the following custom machine config pool is named
|
If you want to delete the machine configs, delete them in reverse order to avoid exceeding the limit. For example, you delete the kubelet-3
machine config before deleting the kubelet-2
machine config.
If you have a machine config with a |
KubeletConfig
CR$ oc get kubeletconfig
NAME AGE
set-max-pods 15m
KubeletConfig
machine config$ oc get mc | grep kubelet
...
99-worker-generated-kubelet-1 b5c5119de007945b6fe6fb215db3b8e2ceb12511 3.2.0 26m
...
The following procedure is an example to show how to configure the maximum number of pods per node on the worker nodes.
Obtain the label associated with the static MachineConfigPool
CR for the type of node you want to configure.
Perform one of the following steps:
View the machine config pool:
$ oc describe machineconfigpool <name>
For example:
$ oc describe machineconfigpool worker
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
creationTimestamp: 2019-02-08T14:52:39Z
generation: 1
labels:
custom-kubelet: set-max-pods (1)
1 | If a label has been added it appears under labels . |
If the label is not present, add a key/value pair:
$ oc label machineconfigpool worker custom-kubelet=set-max-pods
View the available machine configuration objects that you can select:
$ oc get machineconfig
By default, the two kubelet-related configs are 01-master-kubelet
and 01-worker-kubelet
.
Check the current value for the maximum pods per node:
$ oc describe node <node_name>
For example:
$ oc describe node ci-ln-5grqprb-f76d1-ncnqq-worker-a-mdv94
Look for value: pods: <value>
in the Allocatable
stanza:
Allocatable:
attachable-volumes-aws-ebs: 25
cpu: 3500m
hugepages-1Gi: 0
hugepages-2Mi: 0
memory: 15341844Ki
pods: 250
Set the maximum pods per node on the worker nodes by creating a custom resource file that contains the kubelet configuration:
Kubelet configurations that target a specific machine config pool also affect any dependent pools. For example, creating a kubelet configuration for the pool containing worker nodes will also apply to any subset pools, including the pool containing infrastructure nodes. To avoid this, you must create a new machine config pool with a selection expression that only includes worker nodes, and have your kubelet configuration target this new pool. |
apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
name: set-max-pods
spec:
machineConfigPoolSelector:
matchLabels:
custom-kubelet: set-max-pods (1)
kubeletConfig:
maxPods: 500 (2)
1 | Enter the label from the machine config pool. |
2 | Add the kubelet configuration. In this example, use maxPods to set the maximum pods per node. |
The rate at which the kubelet talks to the API server depends on queries per second (QPS) and burst values. The default values,
|
Update the machine config pool for workers with the label:
$ oc label machineconfigpool worker custom-kubelet=set-max-pods
Create the KubeletConfig
object:
$ oc create -f change-maxPods-cr.yaml
Verify that the KubeletConfig
object is created:
$ oc get kubeletconfig
NAME AGE
set-max-pods 15m
Depending on the number of worker nodes in the cluster, wait for the worker nodes to be rebooted one by one. For a cluster with 3 worker nodes, this could take about 10 to 15 minutes.
Verify that the changes are applied to the node:
Check on a worker node that the maxPods
value changed:
$ oc describe node <node_name>
Locate the Allocatable
stanza:
...
Allocatable:
attachable-volumes-gce-pd: 127
cpu: 3500m
ephemeral-storage: 123201474766
hugepages-1Gi: 0
hugepages-2Mi: 0
memory: 14225400Ki
pods: 500 (1)
...
1 | In this example, the pods parameter should report the value you set in the KubeletConfig object. |
Verify the change in the KubeletConfig
object:
$ oc get kubeletconfigs set-max-pods -o yaml
This should show a status of True
and type:Success
, as shown in the following example:
spec:
kubeletConfig:
maxPods: 500
machineConfigPoolSelector:
matchLabels:
custom-kubelet: set-max-pods
status:
conditions:
- lastTransitionTime: "2021-06-30T17:04:07Z"
message: Success
status: "True"
type: Success
You can change some of the settings associated with the OKD CRI-O runtime for the nodes associated with a specific machine config pool (MCP). Using a ContainerRuntimeConfig
custom resource (CR), you set the configuration values and add a label to match the MCP. The MCO then rebuilds the crio.conf
and storage.conf
configuration files on the associated nodes with the updated values.
To revert the changes implemented by using a |
You can modify the following settings by using a ContainerRuntimeConfig
CR:
PIDs limit: Setting the PIDs limit in the ContainerRuntimeConfig
is expected to be deprecated. If PIDs limits are required, it is recommended to use the podPidsLimit
field in the KubeletConfig
CR instead. The default podPidsLimit
value is 4096
and the default pids_limit
value is 0
. If podPidsLimit
is lower than pids_limit
then the effective container PIDs limit is defined by the value set in podPidsLimit
.
The CRI-O flag is applied on the cgroup of the container, while the Kubelet flag is set on the cgroup of the pod. Please adjust the PIDs limit accordingly. |
Log level: The logLevel
parameter sets the CRI-O log_level
parameter, which is the level of verbosity for log messages. The default is info
(log_level = info
). Other options include fatal
, panic
, error
, warn
, debug
, and trace
.
Overlay size: The overlaySize
parameter sets the CRI-O Overlay storage driver size
parameter, which is the maximum size of a container image.
Maximum log size: Setting the maximum log size in the ContainerRuntimeConfig
is expected to be deprecated. If a maximum log size is required, it is recommended to use the containerLogMaxSize
field in the KubeletConfig
CR instead.
Container runtime: The defaultRuntime
parameter sets the container runtime to either runc
or crun
. The default is runc
.
You should have one ContainerRuntimeConfig
CR for each machine config pool with all the config changes you want for that pool. If you are applying the same content to all the pools, you only need one ContainerRuntimeConfig
CR for all the pools.
You should edit an existing ContainerRuntimeConfig
CR to modify existing settings or add new settings instead of creating a new CR for each change. It is recommended to create a new ContainerRuntimeConfig
CR only to modify a different machine config pool, or for changes that are intended to be temporary so that you can revert the changes.
You can create multiple ContainerRuntimeConfig
CRs, as needed, with a limit of 10 per cluster. For the first ContainerRuntimeConfig
CR, the MCO creates a machine config appended with containerruntime
. With each subsequent CR, the controller creates a new containerruntime
machine config with a numeric suffix. For example, if you have a containerruntime
machine config with a -2
suffix, the next containerruntime
machine config is appended with -3
.
If you want to delete the machine configs, you should delete them in reverse order to avoid exceeding the limit. For example, you should delete the containerruntime-3
machine config before deleting the containerruntime-2
machine config.
If you have a machine config with a |
ContainerRuntimeConfig
CRs$ oc get ctrcfg
NAME AGE
ctr-overlay 15m
ctr-level 5m45s
containerruntime
machine configs$ oc get mc | grep container
...
01-master-container-runtime b5c5119de007945b6fe6fb215db3b8e2ceb12511 3.2.0 57m
...
01-worker-container-runtime b5c5119de007945b6fe6fb215db3b8e2ceb12511 3.2.0 57m
...
99-worker-generated-containerruntime b5c5119de007945b6fe6fb215db3b8e2ceb12511 3.2.0 26m
99-worker-generated-containerruntime-1 b5c5119de007945b6fe6fb215db3b8e2ceb12511 3.2.0 17m
99-worker-generated-containerruntime-2 b5c5119de007945b6fe6fb215db3b8e2ceb12511 3.2.0 7m26s
...
The following example sets the log_level
field to debug
and sets the overlay size to 8 GB:
ContainerRuntimeConfig
CRapiVersion: machineconfiguration.openshift.io/v1
kind: ContainerRuntimeConfig
metadata:
name: overlay-size
spec:
machineConfigPoolSelector:
matchLabels:
pools.operator.machineconfiguration.openshift.io/worker: '' (1)
containerRuntimeConfig:
logLevel: debug (2)
overlaySize: 8G (3)
defaultRuntime: "crun" (4)
1 | Specifies the machine config pool label. For a container runtime config, the role must match the name of the associated machine config pool. |
2 | Optional: Specifies the level of verbosity for log messages. |
3 | Optional: Specifies the maximum size of a container image. |
4 | Optional: Specifies the container runtime to deploy to new containers. The default value is runc . |
To change CRI-O settings using the ContainerRuntimeConfig
CR:
Create a YAML file for the ContainerRuntimeConfig
CR:
apiVersion: machineconfiguration.openshift.io/v1
kind: ContainerRuntimeConfig
metadata:
name: overlay-size
spec:
machineConfigPoolSelector:
matchLabels:
pools.operator.machineconfiguration.openshift.io/worker: '' (1)
containerRuntimeConfig: (2)
logLevel: debug
overlaySize: 8G
1 | Specify a label for the machine config pool that you want you want to modify. |
2 | Set the parameters as needed. |
Create the ContainerRuntimeConfig
CR:
$ oc create -f <file_name>.yaml
Verify that the CR is created:
$ oc get ContainerRuntimeConfig
NAME AGE
overlay-size 3m19s
Check that a new containerruntime
machine config is created:
$ oc get machineconfigs | grep containerrun
99-worker-generated-containerruntime 2c9371fbb673b97a6fe8b1c52691999ed3a1bfc2 3.2.0 31s
Monitor the machine config pool until all are shown as ready:
$ oc get mcp worker
NAME CONFIG UPDATED UPDATING DEGRADED MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT AGE
worker rendered-worker-169 False True False 3 1 1 0 9h
Verify that the settings were applied in CRI-O:
Open an oc debug
session to a node in the machine config pool and run chroot /host
.
$ oc debug node/<node_name>
sh-4.4# chroot /host
Verify the changes in the crio.conf
file:
sh-4.4# crio config | grep 'log_level'
log_level = "debug"
Verify the changes in the `storage.conf`file:
sh-4.4# head -n 7 /etc/containers/storage.conf
[storage] driver = "overlay" runroot = "/var/run/containers/storage" graphroot = "/var/lib/containers/storage" [storage.options] additionalimagestores = [] size = "8G"
The root partition of each container shows all of the available disk space of the underlying host. Follow this guidance to set a maximum partition size for the root disk of all containers.
To configure the maximum Overlay size, as well as other CRI-O options like the log level, you can create the following ContainerRuntimeConfig
custom resource definition (CRD):
apiVersion: machineconfiguration.openshift.io/v1
kind: ContainerRuntimeConfig
metadata:
name: overlay-size
spec:
machineConfigPoolSelector:
matchLabels:
custom-crio: overlay-size
containerRuntimeConfig:
logLevel: debug
overlaySize: 8G
Create the configuration object:
$ oc apply -f overlaysize.yml
To apply the new CRI-O configuration to your worker nodes, edit the worker machine config pool:
$ oc edit machineconfigpool worker
Add the custom-crio
label based on the matchLabels
name you set in the ContainerRuntimeConfig
CRD:
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
creationTimestamp: "2020-07-09T15:46:34Z"
generation: 3
labels:
custom-crio: overlay-size
machineconfiguration.openshift.io/mco-built-in: ""
Save the changes, then view the machine configs:
$ oc get machineconfigs
New 99-worker-generated-containerruntime
and rendered-worker-xyz
objects are created:
99-worker-generated-containerruntime 4173030d89fbf4a7a0976d1665491a4d9a6e54f1 3.2.0 7m42s
rendered-worker-xyz 4173030d89fbf4a7a0976d1665491a4d9a6e54f1 3.2.0 7m36s
After those objects are created, monitor the machine config pool for the changes to be applied:
$ oc get mcp worker
The worker nodes show UPDATING
as True
, as well as the number of machines, the number updated, and other details:
NAME CONFIG UPDATED UPDATING DEGRADED MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT AGE
worker rendered-worker-xyz False True False 3 2 2 0 20h
When complete, the worker nodes transition back to UPDATING
as False
, and the UPDATEDMACHINECOUNT
number matches the MACHINECOUNT
:
NAME CONFIG UPDATED UPDATING DEGRADED MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT AGE
worker rendered-worker-xyz True False False 3 3 3 0 20h
Looking at a worker machine, you see that the new 8 GB max size configuration is applied to all of the workers:
head -n 7 /etc/containers/storage.conf
[storage]
driver = "overlay"
runroot = "/var/run/containers/storage"
graphroot = "/var/lib/containers/storage"
[storage.options]
additionalimagestores = []
size = "8G"
Looking inside a container, you see that the root partition is now 8 GB:
~ $ df -h
Filesystem Size Used Available Use% Mounted on
overlay 8.0G 8.0K 8.0G 0% /
You can change some of the settings associated with the OKD CRI-O runtime for the nodes associated with a specific machine config pool (MCP). By using a controller custom resource (CR), you set the configuration values and add a label to match the MCP. The MCO then rebuilds the crio.conf
and default.conf
configuration files on the associated nodes with the updated values.
Earlier versions of OKD included specific machine configs by default. If you updated to a later version of OKD, those machine configs were retained to ensure that clusters running on the same OKD version have the same machine configs.
You can create multiple ContainerRuntimeConfig
CRs, as needed, with a limit of 10 per cluster. For the first ContainerRuntimeConfig
CR, the MCO creates a machine config appended with containerruntime
. With each subsequent CR, the controller creates a containerruntime
machine config with a numeric suffix. For example, if you have a containerruntime
machine config with a -2
suffix, the next containerruntime
machine config is appended with -3
.
If you want to delete the machine configs, delete them in reverse order to avoid exceeding the limit. For example, delete the containerruntime-3
machine config before you delete the containerruntime-2
machine config.
If you have a machine config with a |
ContainerRuntimeConfig
CRs$ oc get ctrcfg
NAME AGE
ctr-overlay 15m
ctr-level 5m45s
containerruntime
related system configs$ cat /proc/1/status | grep Cap
$ capsh --decode=<decode_CapBnd_value> (1)
1 | Replace <decode_CapBnd_value> with the specific value you want to decode. |