×

You can quickly install an OKD cluster on Amazon Web Services (AWS) Wavelength Zones by setting the zone names in the edge compute pool of the install-config.yaml file, or install a cluster in an existing Amazon Virtual Private Cloud (VPC) with Wavelength Zone subnets.

AWS Wavelength Zones is an infrastructure that AWS configured for mobile edge computing (MEC) applications.

A Wavelength Zone embeds AWS compute and storage services within the 5G network of a communication service provider (CSP). By placing application servers in a Wavelength Zone, the application traffic from your 5G devices can stay in the 5G network. The application traffic of the device reaches the target server directly, making latency a non-issue.

Additional resources

Infrastructure prerequisites

  • You reviewed details about OKD installation and update processes.

  • You are familiar with Selecting a cluster installation method and preparing it for users.

  • You configured an AWS account to host the cluster.

    If you have an AWS profile stored on your computer, it must not use a temporary session token that you generated while using a multi-factor authentication device. The cluster continues to use your current AWS credentials to create AWS resources for the entire life of the cluster, so you must use key-based, long-term credentials. To generate appropriate keys, see Managing Access Keys for IAM Users in the AWS documentation. You can supply the keys when you run the installation program.

  • You downloaded the AWS CLI and installed it on your computer. See Install the AWS CLI Using the Bundled Installer (Linux, macOS, or UNIX) in the AWS documentation.

  • If you use a firewall, you configured it to allow the sites that your cluster must access.

  • You noted the region and supported AWS Wavelength Zone locations to create the network resources in.

  • You read AWS Wavelength features in the AWS documentation.

  • You read the Quotas and considerations for Wavelength Zones in the AWS documentation.

  • You added permissions for creating network resources that support AWS Wavelength Zones to the Identity and Access Management (IAM) user or role. For example:

    Example of an additional IAM policy that attached ec2:ModifyAvailabilityZoneGroup, ec2:CreateCarrierGateway, and ec2:DeleteCarrierGateway permissions to a user or role
    {
      "Version": "2012-10-17",
      "Statement": [
        {
          "Effect": "Allow",
          "Action": [
            "ec2:DeleteCarrierGateway",
            "ec2:CreateCarrierGateway"
          ],
          "Resource": "*"
        },
        {
          "Action": [
            "ec2:ModifyAvailabilityZoneGroup"
          ],
          "Effect": "Allow",
          "Resource": "*"
        }
      ]
    }

About AWS Wavelength Zones and edge compute pool

Read the following sections to understand infrastructure behaviors and cluster limitations in an AWS Wavelength Zones environment.

Cluster limitations in AWS Wavelength Zones

Some limitations exist when you try to deploy a cluster with a default installation configuration in an Amazon Web Services (AWS) Wavelength Zone.

The following list details limitations when deploying a cluster in a pre-configured AWS zone:

  • The maximum transmission unit (MTU) between an Amazon EC2 instance in a zone and an Amazon EC2 instance in the Region is 1300. This causes the cluster-wide network MTU to change according to the network plugin that is used with the deployment.

  • Network resources such as Network Load Balancer (NLB), Classic Load Balancer, and Network Address Translation (NAT) Gateways are not globally supported.

  • For an OKD cluster on AWS, the AWS Elastic Block Storage (EBS) gp3 type volume is the default for node volumes and the default for the storage class. This volume type is not globally available on zone locations. By default, the nodes running in zones are deployed with the gp2 EBS volume. The gp2-csi StorageClass parameter must be set when creating workloads on zone nodes.

If you want the installation program to automatically create Wavelength Zone subnets for your OKD cluster, specific configuration limitations apply with this method. The following note details some of these limitations. For other limitations, ensure that you read the "Quotas and considerations for Wavelength Zones" document that Red Hat provides in the "Infrastructure prerequisites" section.

The following configuration limitation applies when you set the installation program to automatically create subnets for your OKD cluster:

  • When the installation program creates private subnets in AWS Wavelength Zones, the program associates each subnet with the route table of its parent zone. This operation ensures that each private subnet can route egress traffic to the internet by way of NAT Gateways in an AWS Region.

  • If the parent-zone route table does not exist during cluster installation, the installation program associates any private subnet with the first available private route table in the Amazon Virtual Private Cloud (VPC). This approach is valid only for AWS Wavelength Zones subnets in an OKD cluster.

About edge compute pools

Edge compute nodes are tainted compute nodes that run in AWS Wavelength Zones locations.

When deploying a cluster that uses Wavelength Zones, consider the following points:

  • Amazon EC2 instances in the Wavelength Zones are more expensive than Amazon EC2 instances in the Availability Zones.

  • The latency is lower between the applications running in AWS Wavelength Zones and the end user. A latency impact exists for some workloads if, for example, ingress traffic is mixed between Wavelength Zones and Availability Zones.

Generally, the maximum transmission unit (MTU) between an Amazon EC2 instance in a Wavelength Zones and an Amazon EC2 instance in the Region is 1300. The cluster network MTU must be always less than the EC2 MTU to account for the overhead. The specific overhead is determined by the network plugin. For example: OVN-Kubernetes has an overhead of 100 bytes.

The network plugin can provide additional features, such as IPsec, that also affect the MTU sizing.

For more information, see How AWS Wavelength work in the AWS documentation.

OKD 4.12 introduced a new compute pool, edge, that is designed for use in remote zones. The edge compute pool configuration is common between AWS Wavelength Zones locations. Because of the type and size limitations of resources like EC2 and EBS on Wavelength Zones resources, the default instance type can vary from the traditional compute pool.

The default Elastic Block Store (EBS) for Wavelength Zones locations is gp2, which differs from the non-edge compute pool. The instance type used for each Wavelength Zones on an edge compute pool also might differ from other compute pools, depending on the instance offerings on the zone.

The edge compute pool creates new labels that developers can use to deploy applications onto AWS Wavelength Zones nodes. The new labels are:

  • node-role.kubernetes.io/edge=''

  • machine.openshift.io/zone-type=wavelength-zone

  • machine.openshift.io/zone-group=$ZONE_GROUP_NAME

By default, the machine sets for the edge compute pool define the taint of NoSchedule to prevent other workloads from spreading on Wavelength Zones instances. Users can only run user workloads if they define tolerations in the pod specification.

Installation prerequisites

Before you install a cluster in an AWS Wavelength Zones environment, you must configure your infrastructure so that it can adopt Wavelength Zone capabilities.

Opting in to an AWS Wavelength Zones

If you plan to create subnets in AWS Wavelength Zones, you must opt in to each zone group separately.

Prerequisites
  • You have installed the AWS CLI.

  • You have determined an AWS Region for where you want to deploy your OKD cluster.

  • You have attached a permissive IAM policy to a user or role account that opts in to the zone group.

Procedure
  1. List the zones that are available in your AWS Region by running the following command:

    Example command for listing available AWS Wavelength Zones in an AWS Region
    $ aws --region "<value_of_AWS_Region>" ec2 describe-availability-zones \
        --query 'AvailabilityZones[].[{ZoneName: ZoneName, GroupName: GroupName, Status: OptInStatus}]' \
        --filters Name=zone-type,Values=wavelength-zone \
        --all-availability-zones

    Depending on the AWS Region, the list of available zones might be long. The command returns the following fields:

    ZoneName

    The name of the Wavelength Zones.

    GroupName

    The group that comprises the zone. To opt in to the Region, save the name.

    Status

    The status of the Wavelength Zones group. If the status is not-opted-in, you must opt in the GroupName as described in the next step.

  2. Opt in to the zone group on your AWS account by running the following command:

    $ aws ec2 modify-availability-zone-group \
        --group-name "<value_of_GroupName>" \(1)
        --opt-in-status opted-in
    1 Replace <value_of_GroupName> with the name of the group of the Wavelength Zones where you want to create subnets. As an example for Wavelength Zones, specify us-east-1-wl1 to use the zone us-east-1-wl1-nyc-wlz-1 (US East New York).

Obtaining an AWS Marketplace image

If you are deploying an OKD cluster using an AWS Marketplace image, you must first subscribe through AWS. Subscribing to the offer provides you with the AMI ID that the installation program uses to deploy compute nodes.

Prerequisites
  • You have an AWS account to purchase the offer. This account does not have to be the same account that is used to install the cluster.

Procedure
  1. Complete the OKD subscription from the AWS Marketplace.

  2. Record the AMI ID for your specific AWS Region. As part of the installation process, you must update the install-config.yaml file with this value before deploying the cluster.

    Sample install-config.yaml file with AWS Marketplace compute nodes
    apiVersion: v1
    baseDomain: example.com
    compute:
    - hyperthreading: Enabled
      name: worker
      platform:
        aws:
          amiID: ami-06c4d345f7c207239 (1)
          type: m5.4xlarge
      replicas: 3
    metadata:
      name: test-cluster
    platform:
      aws:
        region: us-east-2 (2)
    sshKey: ssh-ed25519 AAAA...
    pullSecret: '{"auths": ...}'
    1 The AMI ID from your AWS Marketplace subscription.
    2 Your AMI ID is associated with a specific AWS Region. When creating the installation configuration file, ensure that you select the same AWS Region that you specified when configuring your subscription.

Preparing for the installation

Before you extend nodes to Wavelength Zones, you must prepare certain resources for the cluster installation environment.

Minimum resource requirements for cluster installation

Each cluster machine must meet the following minimum requirements:

Table 1. Minimum resource requirements
Machine Operating System vCPU [1] Virtual RAM Storage Input/Output Per Second (IOPS)[2]

Bootstrap

FCOS

4

16 GB

100 GB

300

Control plane

FCOS

4

16 GB

100 GB

300

Compute

FCOS

2

8 GB

100 GB

300

  1. One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or Hyper-Threading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.

  2. OKD and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.

  3. As with all user-provisioned installations, if you choose to use Fedora compute machines in your cluster, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks. Use of Fedora 7 compute machines is deprecated and has been removed in OKD 4.10 and later.

As of OKD version 4.13, RHCOS is based on RHEL version 9.2, which updates the micro-architecture requirements. The following list contains the minimum instruction set architectures (ISA) that each architecture requires:

  • x86-64 architecture requires x86-64-v2 ISA

  • ARM64 architecture requires ARMv8.0-A ISA

  • IBM Power architecture requires Power 9 ISA

  • s390x architecture requires z14 ISA

For more information, see RHEL Architectures.

If an instance type for your platform meets the minimum requirements for cluster machines, it is supported to use in OKD.

Tested instance types for AWS

The following Amazon Web Services (AWS) instance types have been tested with OKD for use with AWS Wavelength Zones.

Use the machine types included in the following charts for your AWS instances. If you use an instance type that is not listed in the chart, ensure that the instance size you use matches the minimum resource requirements that are listed in the section named "Minimum resource requirements for cluster installation".

Machine types based on 64-bit x86 architecture for AWS Wavelength Zones
  • r5.*

  • t3.*

Additional resources

Creating the installation configuration file

Generate and customize the installation configuration file that the installation program needs to deploy your cluster.

Prerequisites
  • You obtained the OKD installation program and the pull secret for your cluster.

  • You checked that you are deploying your cluster to an AWS Region with an accompanying Fedora CoreOS (FCOS) AMI published by Red Hat. If you are deploying to an AWS Region that requires a custom AMI, such as an AWS GovCloud Region, you must create the install-config.yaml file manually.

Procedure
  1. Create the install-config.yaml file.

    1. Change to the directory that contains the installation program and run the following command:

      $ ./openshift-install create install-config --dir <installation_directory> (1)
      1 For <installation_directory>, specify the directory name to store the files that the installation program creates.

      Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OKD version.

    2. At the prompts, provide the configuration details for your cloud:

      1. Optional: Select an SSH key to use to access your cluster machines.

        For production OKD clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

      2. Select aws as the platform to target.

      3. If you do not have an AWS profile stored on your computer, enter the AWS access key ID and secret access key for the user that you configured to run the installation program.

        The AWS access key ID and secret access key are stored in ~/.aws/credentials in the home directory of the current user on the installation host. You are prompted for the credentials by the installation program if the credentials for the exported profile are not present in the file. Any credentials that you provide to the installation program are stored in the file.

      4. Select the AWS Region to deploy the cluster to.

      5. Select the base domain for the Route 53 service that you configured for your cluster.

      6. Enter a descriptive name for your cluster.

      7. Paste the pull secret from Red Hat OpenShift Cluster Manager. This field is optional.

  2. Optional: Back up the install-config.yaml file.

    The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.

Examples of installation configuration files with edge compute pools

The following examples show install-config.yaml files that contain an edge machine pool configuration.

Configuration that uses an edge pool with a custom instance type
apiVersion: v1
baseDomain: devcluster.openshift.com
metadata:
  name: ipi-edgezone
compute:
- name: edge
  platform:
    aws:
      type: r5.2xlarge
platform:
  aws:
    region: us-west-2
pullSecret: '{"auths": ...}'
sshKey: ssh-ed25519 AAAA...

Instance types differ between locations. To verify availability in the Wavelength Zones in which the cluster runs, see the AWS documentation.

Configuration that uses an edge pool with custom security groups
apiVersion: v1
baseDomain: devcluster.openshift.com
metadata:
  name: ipi-edgezone
compute:
- name: edge
  platform:
    aws:
      additionalSecurityGroupIDs:
        - sg-1 (1)
        - sg-2
platform:
  aws:
    region: us-west-2
pullSecret: '{"auths": ...}'
sshKey: ssh-ed25519 AAAA...
1 Specify the name of the security group as it is displayed on the Amazon EC2 console. Ensure that you include the sg prefix.

Cluster installation options for an AWS Wavelength Zones environment

Choose one of the following installation options to install an OKD cluster on AWS with edge compute nodes defined in Wavelength Zones:

  • Fully automated option: Installing a cluster to quickly extend compute nodes to edge compute pools, where the installation program automatically creates infrastructure resources for the OKD cluster.

  • Existing VPC option: Installing a cluster on AWS into an existing VPC, where you supply Wavelength Zones subnets to the install-config.yaml file.

Next steps

Choose one of the following options to install an OKD cluster in an AWS Wavelength Zones environment:

Install a cluster quickly in AWS Wavelength Zones

For OKD 4.17, you can quickly install a cluster on Amazon Web Services (AWS) to extend compute nodes to Wavelength Zones locations. By using this installation route, the installation program automatically creates network resources and Wavelength Zones subnets for each zone that you defined in your configuration file. To customize the installation, you must modify parameters in the install-config.yaml file before you deploy the cluster.

Modifying an installation configuration file to use AWS Wavelength Zones

Modify an install-config.yaml file to include AWS Wavelength Zones.

Prerequisites
  • You have configured an AWS account.

  • You added your AWS keys and AWS Region to your local AWS profile by running aws configure.

  • You are familiar with the configuration limitations that apply when you specify the installation program to automatically create subnets for your OKD cluster.

  • You opted in to the Wavelength Zones group for each zone.

  • You created an install-config.yaml file by using the procedure "Creating the installation configuration file".

Procedure
  1. Modify the install-config.yaml file by specifying Wavelength Zones names in the platform.aws.zones property of the edge compute pool.

    # ...
    platform:
      aws:
        region: <region_name> (1)
    compute:
    - name: edge
      platform:
        aws:
          zones: (2)
          - <wavelength_zone_name>
    #...
    1 The AWS Region name.
    2 The list of Wavelength Zones names that you use must exist in the same AWS Region specified in the platform.aws.region field.
    Example of a configuration to install a cluster in the us-west-2 AWS Region that extends edge nodes to Wavelength Zones in Los Angeles and Las Vegas locations
    apiVersion: v1
    baseDomain: example.com
    metadata:
      name: cluster-name
    platform:
      aws:
        region: us-west-2
    compute:
    - name: edge
      platform:
        aws:
          zones:
          - us-west-2-wl1-lax-wlz-1
          - us-west-2-wl1-las-wlz-1
    pullSecret: '{"auths": ...}'
    sshKey: 'ssh-ed25519 AAAA...'
    #...
  2. Deploy your cluster.

Installing a cluster in an existing VPC that has Wavelength Zone subnets

You can install a cluster into an existing Amazon Virtual Private Cloud (VPC) on Amazon Web Services (AWS). The installation program provisions the rest of the required infrastructure, which you can further customize. To customize the installation, modify parameters in the install-config.yaml file before you install the cluster.

Installing a cluster on AWS into an existing VPC requires extending compute nodes to the edge of the Cloud Infrastructure by using AWS Wavelength Zones.

You can use a provided CloudFormation template to create network resources. Additionally, you can modify a template to customize your infrastructure or use the information that they contain to create AWS resources according to your company’s policies.

The steps for performing an installer-provisioned infrastructure installation are provided for example purposes only. Installing a cluster in an existing VPC requires that you have knowledge of the cloud provider and the installation process of OKD. You can use a CloudFormation template to assist you with completing these steps or to help model your own cluster installation. Instead of using the CloudFormation template to create resources, you can decide to use other methods for generating these resources.

Creating a VPC in AWS

You can create a Virtual Private Cloud (VPC), and subnets for all Wavelength Zones locations, in Amazon Web Services (AWS) for your OKD cluster to extend compute nodes to edge locations. You can further customize your VPC to meet your requirements, including a VPN and route tables. You can also add new Wavelength Zones subnets not included at initial deployment.

You can use the provided CloudFormation template and a custom parameter file to create a stack of AWS resources that represent the VPC.

If you do not use the provided CloudFormation template to create your AWS infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.

Prerequisites
  • You configured an AWS account.

  • You added your AWS keys and AWS Region to your local AWS profile by running aws configure.

  • You opted in to the AWS Wavelength Zones on your AWS account.

Procedure
  1. Create a JSON file that contains the parameter values that the CloudFormation template requires:

    [
      {
        "ParameterKey": "VpcCidr", (1)
        "ParameterValue": "10.0.0.0/16" (2)
      },
      {
        "ParameterKey": "AvailabilityZoneCount", (3)
        "ParameterValue": "3" (4)
      },
      {
        "ParameterKey": "SubnetBits", (5)
        "ParameterValue": "12" (6)
      }
    ]
    1 The CIDR block for the VPC.
    2 Specify a CIDR block in the format x.x.x.x/16-24.
    3 The number of availability zones to deploy the VPC in.
    4 Specify an integer between 1 and 3.
    5 The size of each subnet in each availability zone.
    6 Specify an integer between 5 and 13, where 5 is /27 and 13 is /19.
  2. Go to the section of the documentation named "CloudFormation template for the VPC", and then copy the syntax from the provided template. Save the copied template syntax as a YAML file on your local system. This template describes the VPC that your cluster requires.

  3. Launch the CloudFormation template to create a stack of AWS resources that represent the VPC by running the following command:

    You must enter the command on a single line.

    $ aws cloudformation create-stack --stack-name <name> \(1)
         --template-body file://<template>.yaml \(2)
         --parameters file://<parameters>.json  (3)
    1 <name> is the name for the CloudFormation stack, such as cluster-vpc. You need the name of this stack if you remove the cluster.
    2 <template> is the relative path to and name of the CloudFormation template YAML file that you saved.
    3 <parameters> is the relative path and the name of the CloudFormation parameters JSON file.
    Example output
    arn:aws:cloudformation:us-east-1:123456789012:stack/cluster-vpc/dbedae40-2fd3-11eb-820e-12a48460849f
  4. Confirm that the template components exist by running the following command:

    $ aws cloudformation describe-stacks --stack-name <name>

    After the StackStatus displays CREATE_COMPLETE, the output displays values for the following parameters. You must provide these parameter values to the other CloudFormation templates that you run to create your cluster.

    VpcId

    The ID of your VPC.

    PublicSubnetIds

    The IDs of the new public subnets.

    PrivateSubnetIds

    The IDs of the new private subnets.

    PublicRouteTableId

    The ID of the new public route table ID.

CloudFormation template for the VPC

You can use the following CloudFormation template to deploy the VPC that you need for your OKD cluster.

CloudFormation template for the VPC
AWSTemplateFormatVersion: 2010-09-09
Description: Template for Best Practice VPC with 1-3 AZs

Parameters:
  VpcCidr:
    AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])(\/(1[6-9]|2[0-4]))$
    ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/16-24.
    Default: 10.0.0.0/16
    Description: CIDR block for VPC.
    Type: String
  AvailabilityZoneCount:
    ConstraintDescription: "The number of availability zones. (Min: 1, Max: 3)"
    MinValue: 1
    MaxValue: 3
    Default: 1
    Description: "How many AZs to create VPC subnets for. (Min: 1, Max: 3)"
    Type: Number
  SubnetBits:
    ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/19-27.
    MinValue: 5
    MaxValue: 13
    Default: 12
    Description: "Size of each subnet to create within the availability zones. (Min: 5 = /27, Max: 13 = /19)"
    Type: Number

Metadata:
  AWS::CloudFormation::Interface:
    ParameterGroups:
    - Label:
        default: "Network Configuration"
      Parameters:
      - VpcCidr
      - SubnetBits
    - Label:
        default: "Availability Zones"
      Parameters:
      - AvailabilityZoneCount
    ParameterLabels:
      AvailabilityZoneCount:
        default: "Availability Zone Count"
      VpcCidr:
        default: "VPC CIDR"
      SubnetBits:
        default: "Bits Per Subnet"

Conditions:
  DoAz3: !Equals [3, !Ref AvailabilityZoneCount]
  DoAz2: !Or [!Equals [2, !Ref AvailabilityZoneCount], Condition: DoAz3]

Resources:
  VPC:
    Type: "AWS::EC2::VPC"
    Properties:
      EnableDnsSupport: "true"
      EnableDnsHostnames: "true"
      CidrBlock: !Ref VpcCidr
  PublicSubnet:
    Type: "AWS::EC2::Subnet"
    Properties:
      VpcId: !Ref VPC
      CidrBlock: !Select [0, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
      AvailabilityZone: !Select
      - 0
      - Fn::GetAZs: !Ref "AWS::Region"
  PublicSubnet2:
    Type: "AWS::EC2::Subnet"
    Condition: DoAz2
    Properties:
      VpcId: !Ref VPC
      CidrBlock: !Select [1, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
      AvailabilityZone: !Select
      - 1
      - Fn::GetAZs: !Ref "AWS::Region"
  PublicSubnet3:
    Type: "AWS::EC2::Subnet"
    Condition: DoAz3
    Properties:
      VpcId: !Ref VPC
      CidrBlock: !Select [2, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
      AvailabilityZone: !Select
      - 2
      - Fn::GetAZs: !Ref "AWS::Region"
  InternetGateway:
    Type: "AWS::EC2::InternetGateway"
  GatewayToInternet:
    Type: "AWS::EC2::VPCGatewayAttachment"
    Properties:
      VpcId: !Ref VPC
      InternetGatewayId: !Ref InternetGateway
  PublicRouteTable:
    Type: "AWS::EC2::RouteTable"
    Properties:
      VpcId: !Ref VPC
  PublicRoute:
    Type: "AWS::EC2::Route"
    DependsOn: GatewayToInternet
    Properties:
      RouteTableId: !Ref PublicRouteTable
      DestinationCidrBlock: 0.0.0.0/0
      GatewayId: !Ref InternetGateway
  PublicSubnetRouteTableAssociation:
    Type: "AWS::EC2::SubnetRouteTableAssociation"
    Properties:
      SubnetId: !Ref PublicSubnet
      RouteTableId: !Ref PublicRouteTable
  PublicSubnetRouteTableAssociation2:
    Type: "AWS::EC2::SubnetRouteTableAssociation"
    Condition: DoAz2
    Properties:
      SubnetId: !Ref PublicSubnet2
      RouteTableId: !Ref PublicRouteTable
  PublicSubnetRouteTableAssociation3:
    Condition: DoAz3
    Type: "AWS::EC2::SubnetRouteTableAssociation"
    Properties:
      SubnetId: !Ref PublicSubnet3
      RouteTableId: !Ref PublicRouteTable
  PrivateSubnet:
    Type: "AWS::EC2::Subnet"
    Properties:
      VpcId: !Ref VPC
      CidrBlock: !Select [3, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
      AvailabilityZone: !Select
      - 0
      - Fn::GetAZs: !Ref "AWS::Region"
  PrivateRouteTable:
    Type: "AWS::EC2::RouteTable"
    Properties:
      VpcId: !Ref VPC
  PrivateSubnetRouteTableAssociation:
    Type: "AWS::EC2::SubnetRouteTableAssociation"
    Properties:
      SubnetId: !Ref PrivateSubnet
      RouteTableId: !Ref PrivateRouteTable
  NAT:
    DependsOn:
    - GatewayToInternet
    Type: "AWS::EC2::NatGateway"
    Properties:
      AllocationId:
        "Fn::GetAtt":
        - EIP
        - AllocationId
      SubnetId: !Ref PublicSubnet
  EIP:
    Type: "AWS::EC2::EIP"
    Properties:
      Domain: vpc
  Route:
    Type: "AWS::EC2::Route"
    Properties:
      RouteTableId:
        Ref: PrivateRouteTable
      DestinationCidrBlock: 0.0.0.0/0
      NatGatewayId:
        Ref: NAT
  PrivateSubnet2:
    Type: "AWS::EC2::Subnet"
    Condition: DoAz2
    Properties:
      VpcId: !Ref VPC
      CidrBlock: !Select [4, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
      AvailabilityZone: !Select
      - 1
      - Fn::GetAZs: !Ref "AWS::Region"
  PrivateRouteTable2:
    Type: "AWS::EC2::RouteTable"
    Condition: DoAz2
    Properties:
      VpcId: !Ref VPC
  PrivateSubnetRouteTableAssociation2:
    Type: "AWS::EC2::SubnetRouteTableAssociation"
    Condition: DoAz2
    Properties:
      SubnetId: !Ref PrivateSubnet2
      RouteTableId: !Ref PrivateRouteTable2
  NAT2:
    DependsOn:
    - GatewayToInternet
    Type: "AWS::EC2::NatGateway"
    Condition: DoAz2
    Properties:
      AllocationId:
        "Fn::GetAtt":
        - EIP2
        - AllocationId
      SubnetId: !Ref PublicSubnet2
  EIP2:
    Type: "AWS::EC2::EIP"
    Condition: DoAz2
    Properties:
      Domain: vpc
  Route2:
    Type: "AWS::EC2::Route"
    Condition: DoAz2
    Properties:
      RouteTableId:
        Ref: PrivateRouteTable2
      DestinationCidrBlock: 0.0.0.0/0
      NatGatewayId:
        Ref: NAT2
  PrivateSubnet3:
    Type: "AWS::EC2::Subnet"
    Condition: DoAz3
    Properties:
      VpcId: !Ref VPC
      CidrBlock: !Select [5, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
      AvailabilityZone: !Select
      - 2
      - Fn::GetAZs: !Ref "AWS::Region"
  PrivateRouteTable3:
    Type: "AWS::EC2::RouteTable"
    Condition: DoAz3
    Properties:
      VpcId: !Ref VPC
  PrivateSubnetRouteTableAssociation3:
    Type: "AWS::EC2::SubnetRouteTableAssociation"
    Condition: DoAz3
    Properties:
      SubnetId: !Ref PrivateSubnet3
      RouteTableId: !Ref PrivateRouteTable3
  NAT3:
    DependsOn:
    - GatewayToInternet
    Type: "AWS::EC2::NatGateway"
    Condition: DoAz3
    Properties:
      AllocationId:
        "Fn::GetAtt":
        - EIP3
        - AllocationId
      SubnetId: !Ref PublicSubnet3
  EIP3:
    Type: "AWS::EC2::EIP"
    Condition: DoAz3
    Properties:
      Domain: vpc
  Route3:
    Type: "AWS::EC2::Route"
    Condition: DoAz3
    Properties:
      RouteTableId:
        Ref: PrivateRouteTable3
      DestinationCidrBlock: 0.0.0.0/0
      NatGatewayId:
        Ref: NAT3
  S3Endpoint:
    Type: AWS::EC2::VPCEndpoint
    Properties:
      PolicyDocument:
        Version: 2012-10-17
        Statement:
        - Effect: Allow
          Principal: '*'
          Action:
          - '*'
          Resource:
          - '*'
      RouteTableIds:
      - !Ref PublicRouteTable
      - !Ref PrivateRouteTable
      - !If [DoAz2, !Ref PrivateRouteTable2, !Ref "AWS::NoValue"]
      - !If [DoAz3, !Ref PrivateRouteTable3, !Ref "AWS::NoValue"]
      ServiceName: !Join
      - ''
      - - com.amazonaws.
        - !Ref 'AWS::Region'
        - .s3
      VpcId: !Ref VPC

Outputs:
  VpcId:
    Description: ID of the new VPC.
    Value: !Ref VPC
  PublicSubnetIds:
    Description: Subnet IDs of the public subnets.
    Value:
      !Join [
        ",",
        [!Ref PublicSubnet, !If [DoAz2, !Ref PublicSubnet2, !Ref "AWS::NoValue"], !If [DoAz3, !Ref PublicSubnet3, !Ref "AWS::NoValue"]]
      ]
  PrivateSubnetIds:
    Description: Subnet IDs of the private subnets.
    Value:
      !Join [
        ",",
        [!Ref PrivateSubnet, !If [DoAz2, !Ref PrivateSubnet2, !Ref "AWS::NoValue"], !If [DoAz3, !Ref PrivateSubnet3, !Ref "AWS::NoValue"]]
      ]
  PublicRouteTableId:
    Description: Public Route table ID
    Value: !Ref PublicRouteTable
  PrivateRouteTableIds:
    Description: Private Route table IDs
    Value:
      !Join [
        ",",
        [
          !Join ["=", [
            !Select [0, "Fn::GetAZs": !Ref "AWS::Region"],
            !Ref PrivateRouteTable
          ]],
          !If [DoAz2,
               !Join ["=", [!Select [1, "Fn::GetAZs": !Ref "AWS::Region"], !Ref PrivateRouteTable2]],
               !Ref "AWS::NoValue"
          ],
          !If [DoAz3,
               !Join ["=", [!Select [2, "Fn::GetAZs": !Ref "AWS::Region"], !Ref PrivateRouteTable3]],
               !Ref "AWS::NoValue"
          ]
        ]
      ]

Creating a VPC carrier gateway

To use public subnets in your OKD cluster that runs on Wavelength Zones, you must create the carrier gateway and associate the carrier gateway to the VPC. Subnets are useful for deploying load balancers or edge compute nodes.

To create edge nodes or internet-facing load balancers in Wavelength Zones locations for your OKD cluster, you must create the following required network components:

  • A carrier gateway that associates to the existing VPC.

  • A carrier route table that lists route entries.

  • A subnet that associates to the carrier route table.

Carrier gateways exist for VPCs that only contain subnets in a Wavelength Zone.

The following list explains the functions of a carrier gateway in the context of an AWS Wavelength Zones location:

  • Provides connectivity between your Wavelength Zone and the carrier network, which includes any available devices from the carrier network.

  • Performs Network Address Translation (NAT) functions, such as translating IP addresses that are public IP addresses stored in a network border group, from Wavelength Zones to carrier IP addresses. These translation functions apply to inbound and outbound traffic.

  • Authorizes inbound traffic from a carrier network that is located in a specific location.

  • Authorizes outbound traffic to a carrier network and the internet.

No inbound connection configuration exists from the internet to a Wavelength Zone through the carrier gateway.

You can use the provided CloudFormation template to create a stack of the following AWS resources:

  • One carrier gateway that associates to the VPC ID in the template.

  • One public route table for the Wavelength Zone named as <ClusterName>-public-carrier.

  • Default IPv4 route entry in the new route table that targets the carrier gateway.

  • VPC gateway endpoint for an AWS Simple Storage Service (S3).

If you do not use the provided CloudFormation template to create your AWS infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.

Prerequisites
  • You configured an AWS account.

  • You added your AWS keys and region to your local AWS profile by running aws configure.

Procedure
  1. Go to the next section of the documentation named "CloudFormation template for the VPC Carrier Gateway", and then copy the syntax from the CloudFormation template for VPC Carrier Gateway template. Save the copied template syntax as a YAML file on your local system. This template describes the VPC that your cluster requires.

  2. Run the following command to deploy the CloudFormation template, which creates a stack of AWS resources that represent the VPC:

    $ aws cloudformation create-stack --stack-name <stack_name> \(1)
      --region ${CLUSTER_REGION} \
      --template-body file://<template>.yaml \(2)
      --parameters \//
        ParameterKey=VpcId,ParameterValue="${VpcId}" \(3)
        ParameterKey=ClusterName,ParameterValue="${ClusterName}" (4)
    
    1 <stack_name> is the name for the CloudFormation stack, such as clusterName-vpc-carrier-gw. You need the name of this stack if you remove the cluster.
    2 <template> is the relative path and the name of the CloudFormation template YAML file that you saved.
    3 <VpcId> is the VPC ID extracted from the CloudFormation stack output created in the section named "Creating a VPC in AWS".
    4 <ClusterName> is a custom value that prefixes to resources that the CloudFormation stack creates. You can use the same name that is defined in the metadata.name section of the install-config.yaml configuration file.
    Example output
    arn:aws:cloudformation:us-east-1:123456789012:stack/<stack_name>/dbedae40-2fd3-11eb-820e-12a48460849f
Verification
  • Confirm that the CloudFormation template components exist by running the following command:

    $ aws cloudformation describe-stacks --stack-name <stack_name>

    After the StackStatus displays CREATE_COMPLETE, the output displays values for the following parameter. Ensure that you provide the parameter value to the other CloudFormation templates that you run to create for your cluster.

    PublicRouteTableId

    The ID of the Route Table in the Carrier infrastructure.

Additional resources

CloudFormation template for the VPC Carrier Gateway

You can use the following CloudFormation template to deploy the Carrier Gateway on AWS Wavelength infrastructure.

CloudFormation template for VPC Carrier Gateway
AWSTemplateFormatVersion: 2010-09-09
Description: Template for Creating Wavelength Zone Gateway (Carrier Gateway).

Parameters:
  VpcId:
    Description: VPC ID to associate the Carrier Gateway.
    Type: String
    AllowedPattern: ^(?:(?:vpc)(?:-[a-zA-Z0-9]+)?\b|(?:[0-9]{1,3}\.){3}[0-9]{1,3})$
    ConstraintDescription: VPC ID must be with valid name, starting with vpc-.*.
  ClusterName:
    Description: Cluster Name or Prefix name to prepend the tag Name for each subnet.
    Type: String
    AllowedPattern: ".+"
    ConstraintDescription: ClusterName parameter must be specified.

Resources:
  CarrierGateway:
    Type: "AWS::EC2::CarrierGateway"
    Properties:
      VpcId: !Ref VpcId
      Tags:
      - Key: Name
        Value: !Join ['-', [!Ref ClusterName, "cagw"]]

  PublicRouteTable:
    Type: "AWS::EC2::RouteTable"
    Properties:
      VpcId: !Ref VpcId
      Tags:
      - Key: Name
        Value: !Join ['-', [!Ref ClusterName, "public-carrier"]]

  PublicRoute:
    Type: "AWS::EC2::Route"
    DependsOn: CarrierGateway
    Properties:
      RouteTableId: !Ref PublicRouteTable
      DestinationCidrBlock: 0.0.0.0/0
      CarrierGatewayId: !Ref CarrierGateway

  S3Endpoint:
    Type: AWS::EC2::VPCEndpoint
    Properties:
      PolicyDocument:
        Version: 2012-10-17
        Statement:
        - Effect: Allow
          Principal: '*'
          Action:
          - '*'
          Resource:
          - '*'
      RouteTableIds:
      - !Ref PublicRouteTable
      ServiceName: !Join
      - ''
      - - com.amazonaws.
        - !Ref 'AWS::Region'
        - .s3
      VpcId: !Ref VpcId

Outputs:
  PublicRouteTableId:
    Description: Public Route table ID
    Value: !Ref PublicRouteTable

Creating subnets in Wavelength Zones

Before you configure a machine set for edge compute nodes in your OKD cluster, you must create the subnets in Wavelength Zones. Complete the following procedure for each Wavelength Zone that you want to deploy compute nodes to.

You can use the provided CloudFormation template and create a CloudFormation stack. You can then use this stack to custom provision a subnet.

If you do not use the provided CloudFormation template to create your AWS infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.

Prerequisites
  • You configured an AWS account.

  • You added your AWS keys and region to your local AWS profile by running aws configure.

  • You opted in to the Wavelength Zones group.

Procedure
  1. Go to the section of the documentation named "CloudFormation template for the VPC subnet", and copy the syntax from the template. Save the copied template syntax as a YAML file on your local system. This template describes the VPC that your cluster requires.

  2. Run the following command to deploy the CloudFormation template, which creates a stack of AWS resources that represent the VPC:

    $ aws cloudformation create-stack --stack-name <stack_name> \ (1)
      --region ${CLUSTER_REGION} \
      --template-body file://<template>.yaml \ (2)
      --parameters \
        ParameterKey=VpcId,ParameterValue="${VPC_ID}" \ (3)
        ParameterKey=ClusterName,ParameterValue="${CLUSTER_NAME}" \ (4)
        ParameterKey=ZoneName,ParameterValue="${ZONE_NAME}" \ (5)
        ParameterKey=PublicRouteTableId,ParameterValue="${ROUTE_TABLE_PUB}" \ (6)
        ParameterKey=PublicSubnetCidr,ParameterValue="${SUBNET_CIDR_PUB}" \ (7)
        ParameterKey=PrivateRouteTableId,ParameterValue="${ROUTE_TABLE_PVT}" \ (8)
        ParameterKey=PrivateSubnetCidr,ParameterValue="${SUBNET_CIDR_PVT}" (9)
    
    1 <stack_name> is the name for the CloudFormation stack, such as cluster-wl-<wavelength_zone_shortname>. You need the name of this stack if you remove the cluster.
    2 <template> is the relative path and the name of the CloudFormation template YAML file that you saved.
    3 ${VPC_ID} is the VPC ID, which is the value VpcID in the output of the CloudFormation template for the VPC.
    4 ${ZONE_NAME} is the value of Wavelength Zones name to create the subnets.
    5 ${CLUSTER_NAME} is the value of ClusterName to be used as a prefix of the new AWS resource names.
    6 ${ROUTE_TABLE_PUB} is the PublicRouteTableId extracted from the output of the VPC’s carrier gateway CloudFormation stack.
    7 ${SUBNET_CIDR_PUB} is a valid CIDR block that is used to create the public subnet. This block must be part of the VPC CIDR block VpcCidr.
    8 ${ROUTE_TABLE_PVT} is the PrivateRouteTableId extracted from the output of the VPC’s CloudFormation stack.
    9 ${SUBNET_CIDR_PVT} is a valid CIDR block that is used to create the private subnet. This block must be part of the VPC CIDR block VpcCidr.
Example output
arn:aws:cloudformation:us-east-1:123456789012:stack/<stack_name>/dbedae40-820e-11eb-2fd3-12a48460849f
Verification
  • Confirm that the template components exist by running the following command:

    $ aws cloudformation describe-stacks --stack-name <stack_name>

    After the StackStatus displays CREATE_COMPLETE, the output displays values for the following parameters. Ensure that you provide these parameter values to the other CloudFormation templates that you run to create for your cluster.

    PublicSubnetId

    The IDs of the public subnet created by the CloudFormation stack.

    PrivateSubnetId

    The IDs of the private subnet created by the CloudFormation stack.

CloudFormation template for the VPC subnet

You can use the following CloudFormation template to deploy the private and public subnets in a zone on Wavelength Zones infrastructure.

CloudFormation template for VPC subnets
AWSTemplateFormatVersion: 2010-09-09
Description: Template for Best Practice Subnets (Public and Private)

Parameters:
  VpcId:
    Description: VPC ID that comprises all the target subnets.
    Type: String
    AllowedPattern: ^(?:(?:vpc)(?:-[a-zA-Z0-9]+)?\b|(?:[0-9]{1,3}\.){3}[0-9]{1,3})$
    ConstraintDescription: VPC ID must be with valid name, starting with vpc-.*.
  ClusterName:
    Description: Cluster name or prefix name to prepend the Name tag for each subnet.
    Type: String
    AllowedPattern: ".+"
    ConstraintDescription: ClusterName parameter must be specified.
  ZoneName:
    Description: Zone Name to create the subnets, such as us-west-2-lax-1a.
    Type: String
    AllowedPattern: ".+"
    ConstraintDescription: ZoneName parameter must be specified.
  PublicRouteTableId:
    Description: Public Route Table ID to associate the public subnet.
    Type: String
    AllowedPattern: ".+"
    ConstraintDescription: PublicRouteTableId parameter must be specified.
  PublicSubnetCidr:
    AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])(\/(1[6-9]|2[0-4]))$
    ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/16-24.
    Default: 10.0.128.0/20
    Description: CIDR block for public subnet.
    Type: String
  PrivateRouteTableId:
    Description: Private Route Table ID to associate the private subnet.
    Type: String
    AllowedPattern: ".+"
    ConstraintDescription: PrivateRouteTableId parameter must be specified.
  PrivateSubnetCidr:
    AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])(\/(1[6-9]|2[0-4]))$
    ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/16-24.
    Default: 10.0.128.0/20
    Description: CIDR block for private subnet.
    Type: String


Resources:
  PublicSubnet:
    Type: "AWS::EC2::Subnet"
    Properties:
      VpcId: !Ref VpcId
      CidrBlock: !Ref PublicSubnetCidr
      AvailabilityZone: !Ref ZoneName
      Tags:
      - Key: Name
        Value: !Join ['-', [!Ref ClusterName, "public", !Ref ZoneName]]

  PublicSubnetRouteTableAssociation:
    Type: "AWS::EC2::SubnetRouteTableAssociation"
    Properties:
      SubnetId: !Ref PublicSubnet
      RouteTableId: !Ref PublicRouteTableId

  PrivateSubnet:
    Type: "AWS::EC2::Subnet"
    Properties:
      VpcId: !Ref VpcId
      CidrBlock: !Ref PrivateSubnetCidr
      AvailabilityZone: !Ref ZoneName
      Tags:
      - Key: Name
        Value: !Join ['-', [!Ref ClusterName, "private", !Ref ZoneName]]

  PrivateSubnetRouteTableAssociation:
    Type: "AWS::EC2::SubnetRouteTableAssociation"
    Properties:
      SubnetId: !Ref PrivateSubnet
      RouteTableId: !Ref PrivateRouteTableId

Outputs:
  PublicSubnetId:
    Description: Subnet ID of the public subnets.
    Value:
      !Join ["", [!Ref PublicSubnet]]

  PrivateSubnetId:
    Description: Subnet ID of the private subnets.
    Value:
      !Join ["", [!Ref PrivateSubnet]]

Modifying an installation configuration file to use AWS Wavelength Zones subnets

Modify your install-config.yaml file to include Wavelength Zones subnets.

Prerequisites
  • You created subnets by using the procedure "Creating subnets in Wavelength Zones".

  • You created an install-config.yaml file by using the procedure "Creating the installation configuration file".

Procedure
  • Modify the install-config.yaml configuration file by specifying Wavelength Zones subnets in the platform.aws.subnets parameter.

    Example installation configuration file with Wavelength Zones subnets
    # ...
    platform:
      aws:
        region: us-west-2
        subnets: (1)
        - publicSubnetId-1
        - publicSubnetId-2
        - publicSubnetId-3
        - privateSubnetId-1
        - privateSubnetId-2
        - privateSubnetId-3
        - publicOrPrivateSubnetID-Wavelength-1
    # ...
    1 List of subnet IDs created in the zones: Availability and Wavelength Zones.
Additional resources

Optional: Assign public IP addresses to edge compute nodes

If your workload requires deploying the edge compute nodes in public subnets on Wavelength Zones infrastructure, you can configure the machine set manifests when installing a cluster.

AWS Wavelength Zones infrastructure accesses the network traffic in a specified zone, so applications can take advantage of lower latency when serving end users that are closer to that zone.

The default setting that deploys compute nodes in private subnets might not meet your needs, so consider creating edge compute nodes in public subnets when you want to apply more customization to your infrastructure.

By default, OKD deploy the compute nodes in private subnets. For best performance, consider placing compute nodes in subnets that have their Public IP addresses attached to the subnets.

You must create additional security groups, but ensure that you only open the groups' rules over the internet when you really need to.

Procedure
  1. Change to the directory that contains the installation program and generate the manifest files. Ensure that the installation manifests get created at the openshift and manifests directory level.

    $ ./openshift-install create manifests --dir <installation_directory>
  2. Edit the machine set manifest that the installation program generates for the Wavelength Zones, so that the manifest gets deployed in public subnets. Specify true for the spec.template.spec.providerSpec.value.publicIP parameter.

    Example machine set manifest configuration for installing a cluster quickly in Wavelength Zones
    spec:
      template:
        spec:
          providerSpec:
            value:
              publicIp: true
              subnet:
                filters:
                  - name: tag:Name
                    values:
                      - ${INFRA_ID}-public-${ZONE_NAME}
    Example machine set manifest configuration for installing a cluster in an existing VPC that has Wavelength Zones subnets
    apiVersion: machine.openshift.io/v1beta1
    kind: MachineSet
    metadata:
      name: <infrastructure_id>-edge-<zone>
      namespace: openshift-machine-api
    spec:
      template:
        spec:
          providerSpec:
            value:
              publicIp: true

Deploying the cluster

You can install OKD on a compatible cloud platform.

You can run the create cluster command of the installation program only once, during initial installation.

Prerequisites
  • You have configured an account with the cloud platform that hosts your cluster.

  • You have the OKD installation program and the pull secret for your cluster.

  • You have verified that the cloud provider account on your host has the correct permissions to deploy the cluster. An account with incorrect permissions causes the installation process to fail with an error message that displays the missing permissions.

Procedure
  1. Change to the directory that contains the installation program and initialize the cluster deployment:

    $ ./openshift-install create cluster --dir <installation_directory> \ (1)
        --log-level=info (2)
    
    1 For <installation_directory>, specify the location of your customized ./install-config.yaml file.
    2 To view different installation details, specify warn, debug, or error instead of info.
  2. Optional: Remove or disable the AdministratorAccess policy from the IAM account that you used to install the cluster.

    The elevated permissions provided by the AdministratorAccess policy are required only during installation.

Verification

When the cluster deployment completes successfully:

  • The terminal displays directions for accessing your cluster, including a link to the web console and credentials for the kubeadmin user.

  • Credential information also outputs to <installation_directory>/.openshift_install.log.

Do not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.

Example output
...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s
  • The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.

  • It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.

Verifying the status of the deployed cluster

Verify that your OKD successfully deployed on AWS Wavelength Zones.

Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OKD installation.

Prerequisites
  • You deployed an OKD cluster.

  • You installed the oc CLI.

Procedure
  1. Export the kubeadmin credentials:

    $ export KUBECONFIG=<installation_directory>/auth/kubeconfig (1)
    1 For <installation_directory>, specify the path to the directory that you stored the installation files in.
  2. Verify you can run oc commands successfully using the exported configuration:

    $ oc whoami
    Example output
    system:admin

Logging in to the cluster by using the web console

The kubeadmin user exists by default after an OKD installation. You can log in to your cluster as the kubeadmin user by using the OKD web console.

Prerequisites
  • You have access to the installation host.

  • You completed a cluster installation and all cluster Operators are available.

Procedure
  1. Obtain the password for the kubeadmin user from the kubeadmin-password file on the installation host:

    $ cat <installation_directory>/auth/kubeadmin-password

    Alternatively, you can obtain the kubeadmin password from the <installation_directory>/.openshift_install.log log file on the installation host.

  2. List the OKD web console route:

    $ oc get routes -n openshift-console | grep 'console-openshift'

    Alternatively, you can obtain the OKD route from the <installation_directory>/.openshift_install.log log file on the installation host.

    Example output
    console     console-openshift-console.apps.<cluster_name>.<base_domain>            console     https   reencrypt/Redirect   None
  3. Navigate to the route detailed in the output of the preceding command in a web browser and log in as the kubeadmin user.

Additional resources

Verifying nodes that were created with edge compute pool

After you install a cluster that uses AWS Wavelength Zones infrastructure, check the status of the machine that was created by the machine set manifests created during installation.

  1. To check the machine sets created from the subnet you added to the install-config.yaml file, run the following command:

    $ oc get machineset -n openshift-machine-api
    Example output
    NAME                                         DESIRED   CURRENT   READY   AVAILABLE   AGE
    cluster-7xw5g-edge-us-east-1-wl1-nyc-wlz-1   1         1         1       1           3h4m
    cluster-7xw5g-worker-us-east-1a              1         1         1       1           3h4m
    cluster-7xw5g-worker-us-east-1b              1         1         1       1           3h4m
    cluster-7xw5g-worker-us-east-1c              1         1         1       1           3h4m
  2. To check the machines that were created from the machine sets, run the following command:

    $ oc get machines -n openshift-machine-api
    Example output
    NAME                                        PHASE     TYPE          REGION      ZONE               AGE
    cluster-7xw5g-edge-us-east-1-wl1-nyc-wlz-1-wbclh  Running   c5d.2xlarge   us-east-1   us-east-1-wl1-nyc-wlz-1  3h
    cluster-7xw5g-master-0                            Running   m6i.xlarge    us-east-1   us-east-1a               3h4m
    cluster-7xw5g-master-1                            Running   m6i.xlarge    us-east-1   us-east-1b               3h4m
    cluster-7xw5g-master-2                            Running   m6i.xlarge    us-east-1   us-east-1c               3h4m
    cluster-7xw5g-worker-us-east-1a-rtp45             Running   m6i.xlarge    us-east-1   us-east-1a               3h
    cluster-7xw5g-worker-us-east-1b-glm7c             Running   m6i.xlarge    us-east-1   us-east-1b               3h
    cluster-7xw5g-worker-us-east-1c-qfvz4             Running   m6i.xlarge    us-east-1   us-east-1c               3h
  3. To check nodes with edge roles, run the following command:

    $ oc get nodes -l node-role.kubernetes.io/edge
    Example output
    NAME                           STATUS   ROLES         AGE    VERSION
    ip-10-0-207-188.ec2.internal   Ready    edge,worker   172m   v1.25.2+d2e245f
Next steps