×

In OKD version 4, you can install a customized cluster on infrastructure that the installation program provisions on Amazon Web Services (AWS). To customize the installation, you modify parameters in the install-config.yaml file before you install the cluster.

The scope of the OKD installation configurations is intentionally narrow. It is designed for simplicity and ensured success. You can complete many more OKD configuration tasks after an installation completes.

Prerequisites

Obtaining an AWS Marketplace image

If you are deploying an OKD cluster using an AWS Marketplace image, you must first subscribe through AWS. Subscribing to the offer provides you with the AMI ID that the installation program uses to deploy compute nodes.

Prerequisites
  • You have an AWS account to purchase the offer. This account does not have to be the same account that is used to install the cluster.

Procedure
  1. Complete the OKD subscription from the AWS Marketplace.

  2. Record the AMI ID for your specific AWS Region. As part of the installation process, you must update the install-config.yaml file with this value before deploying the cluster.

    Sample install-config.yaml file with AWS Marketplace compute nodes
    apiVersion: v1
    baseDomain: example.com
    compute:
    - hyperthreading: Enabled
      name: worker
      platform:
        aws:
          amiID: ami-06c4d345f7c207239 (1)
          type: m5.4xlarge
      replicas: 3
    metadata:
      name: test-cluster
    platform:
      aws:
        region: us-east-2 (2)
    sshKey: ssh-ed25519 AAAA...
    pullSecret: '{"auths": ...}'
    1 The AMI ID from your AWS Marketplace subscription.
    2 Your AMI ID is associated with a specific AWS Region. When creating the installation configuration file, ensure that you select the same AWS Region that you specified when configuring your subscription.

Creating the installation configuration file

You can customize the OKD cluster you install on Amazon Web Services (AWS).

Prerequisites
  • You have the OKD installation program and the pull secret for your cluster.

Procedure
  1. Create the install-config.yaml file.

    1. Change to the directory that contains the installation program and run the following command:

      $ ./openshift-install create install-config --dir <installation_directory> (1)
      1 For <installation_directory>, specify the directory name to store the files that the installation program creates.

      When specifying the directory:

      • Verify that the directory has the execute permission. This permission is required to run Terraform binaries under the installation directory.

      • Use an empty directory. Some installation assets, such as bootstrap X.509 certificates, have short expiration intervals, therefore you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OKD version.

    2. At the prompts, provide the configuration details for your cloud:

      1. Optional: Select an SSH key to use to access your cluster machines.

        For production OKD clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

      2. Select AWS as the platform to target.

      3. If you do not have an Amazon Web Services (AWS) profile stored on your computer, enter the AWS access key ID and secret access key for the user that you configured to run the installation program.

      4. Select the AWS region to deploy the cluster to.

      5. Select the base domain for the Route 53 service that you configured for your cluster.

      6. Enter a descriptive name for your cluster.

  2. Modify the install-config.yaml file. You can find more information about the available parameters in the "Installation configuration parameters" section.

    If you are installing a three-node cluster, be sure to set the compute.replicas parameter to 0. This ensures that the cluster’s control planes are schedulable. For more information, see "Installing a three-node cluster on AWS".

  3. Back up the install-config.yaml file so that you can use it to install multiple clusters.

    The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.

Minimum resource requirements for cluster installation

Each cluster machine must meet the following minimum requirements:

Table 1. Minimum resource requirements
Machine Operating System vCPU [1] Virtual RAM Storage Input/Output Per Second (IOPS)[2]

Bootstrap

FCOS

4

16 GB

100 GB

300

Control plane

FCOS

4

16 GB

100 GB

300

Compute

FCOS

2

8 GB

100 GB

300

  1. One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or hyperthreading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.

  2. OKD and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.

  3. As with all user-provisioned installations, if you choose to use Fedora compute machines in your cluster, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks. Use of Fedora 7 compute machines is deprecated and has been removed in OKD 4.10 and later.

As of OKD version 4.13, RHCOS is based on RHEL version 9.2, which updates the micro-architecture requirements. The following list contains the minimum instruction set architectures (ISA) that each architecture requires:

  • x86-64 architecture requires x86-64-v2 ISA

  • ARM64 architecture requires ARMv8.0-A ISA

  • IBM Power architecture requires Power 9 ISA

  • s390x architecture requires z14 ISA

For more information, see RHEL Architectures.

If an instance type for your platform meets the minimum requirements for cluster machines, it is supported to use in OKD.

Additional resources

Tested instance types for AWS

The following Amazon Web Services (AWS) instance types have been tested with OKD.

Use the machine types included in the following charts for your AWS instances. If you use an instance type that is not listed in the chart, ensure that the instance size you use matches the minimum resource requirements that are listed in the section named "Minimum resource requirements for cluster installation".

Machine types based on 64-bit x86 architecture
  • c4.*

  • c5.*

  • c5a.*

  • i3.*

  • m4.*

  • m5.*

  • m5a.*

  • m6a.*

  • m6i.*

  • r4.*

  • r5.*

  • r5a.*

  • r6i.*

  • t3.*

  • t3a.*

Tested instance types for AWS on 64-bit ARM infrastructures

The following Amazon Web Services (AWS) 64-bit ARM instance types have been tested with OKD.

Use the machine types included in the following charts for your AWS ARM instances. If you use an instance type that is not listed in the chart, ensure that the instance size you use matches the minimum resource requirements that are listed in "Minimum resource requirements for cluster installation".

Machine types based on 64-bit ARM architecture
  • c6g.*

  • m6g.*

Sample customized install-config.yaml file for AWS

You can customize the installation configuration file (install-config.yaml) to specify more details about your OKD cluster’s platform or modify the values of the required parameters.

This sample YAML file is provided for reference only. You must obtain your install-config.yaml file by using the installation program and modify it.

apiVersion: v1
baseDomain: example.com (1)
credentialsMode: Mint (2)
controlPlane:  (3) (4)
  hyperthreading: Enabled (5)
  name: master
  platform:
    aws:
      zones:
      - us-west-2a
      - us-west-2b
      rootVolume:
        iops: 4000
        size: 500
        type: io1 (6)
      metadataService:
        authentication: Optional (7)
      type: m6i.xlarge
  replicas: 3
compute: (3)
- hyperthreading: Enabled (5)
  name: worker
  platform:
    aws:
      rootVolume:
        iops: 2000
        size: 500
        type: io1 (6)
      metadataService:
        authentication: Optional (7)
      type: c5.4xlarge
      zones:
      - us-west-2c
  replicas: 3
metadata:
  name: test-cluster (1)
networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23
  machineNetwork:
  - cidr: 10.0.0.0/16
  networkType: OVNKubernetes (8)
  serviceNetwork:
  - 172.30.0.0/16
platform:
  aws:
    region: us-west-2 (1)
    propagateUserTags: true (3)
    userTags:
      adminContact: jdoe
      costCenter: 7536
    amiID: ami-0c5d3e03c0ab9b19a (9)
    serviceEndpoints: (10)
      - name: ec2
        url: https://vpce-id.ec2.us-west-2.vpce.amazonaws.com
sshKey: ssh-ed25519 AAAA... (11)
pullSecret: '{"auths": ...}' (1)
1 Required. The installation program prompts you for this value.
2 Optional: Add this parameter to force the Cloud Credential Operator (CCO) to use the specified mode. By default, the CCO uses the root credentials in the kube-system namespace to dynamically try to determine the capabilities of the credentials. For details about CCO modes, see the "About the Cloud Credential Operator" section in the Authentication and authorization guide.
3 If you do not provide these parameters and values, the installation program provides the default value.
4 The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
5 Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.

If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger instance types, such as m4.2xlarge or m5.2xlarge, for your machines if you disable simultaneous multithreading.

6 To configure faster storage for etcd, especially for larger clusters, set the storage type as io1 and set iops to 2000.
7 Whether to require the Amazon EC2 Instance Metadata Service v2 (IMDSv2). To require IMDSv2, set the parameter value to Required. To allow the use of both IMDSv1 and IMDSv2, set the parameter value to Optional. If no value is specified, both IMDSv1 and IMDSv2 are allowed.

The IMDS configuration for control plane machines that is set during cluster installation can only be changed by using the AWS CLI. The IMDS configuration for compute machines can be changed by using compute machine sets.

8 The cluster network plugin to install. The default value OVNKubernetes is the only supported value.
9 The ID of the AMI used to boot machines for the cluster. If set, the AMI must belong to the same region as the cluster.
10 The AWS service endpoints. Custom endpoints are required when installing to an unknown AWS region. The endpoint URL must use the https protocol and the host must trust the certificate.
11 You can optionally provide the sshKey value that you use to access the machines in your cluster.

For production OKD clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

Configuring the cluster-wide proxy during installation

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS proxy available. You can configure a new OKD cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.

Prerequisites
  • You have an existing install-config.yaml file.

  • You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.

    The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.

    For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and OpenStack, the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).

Procedure
  1. Edit your install-config.yaml file and add the proxy settings. For example:

    apiVersion: v1
    baseDomain: my.domain.com
    proxy:
      httpProxy: http://<username>:<pswd>@<ip>:<port> (1)
      httpsProxy: https://<username>:<pswd>@<ip>:<port> (2)
      noProxy: ec2.<aws_region>.amazonaws.com,elasticloadbalancing.<aws_region>.amazonaws.com,s3.<aws_region>.amazonaws.com (3)
    additionalTrustBundle: | (4)
        -----BEGIN CERTIFICATE-----
        <MY_TRUSTED_CA_CERT>
        -----END CERTIFICATE-----
    additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> (5)
    1 A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
    2 A proxy URL to use for creating HTTPS connections outside the cluster.
    3 A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations. If you have added the Amazon EC2,Elastic Load Balancing, and S3 VPC endpoints to your VPC, you must add these endpoints to the noProxy field.
    4 If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace to hold the additional CA certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter with the FCOS trust bundle. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the FCOS trust bundle.
    5 Optional: The policy to determine the configuration of the Proxy object to reference the user-ca-bundle config map in the trustedCA field. The allowed values are Proxyonly and Always. Use Proxyonly to reference the user-ca-bundle config map only when http/https proxy is configured. Use Always to always reference the user-ca-bundle config map. The default value is Proxyonly.

    The installation program does not support the proxy readinessEndpoints field.

    If the installer times out, restart and then complete the deployment by using the wait-for command of the installer. For example:

    $ ./openshift-install wait-for install-complete --log-level debug
  2. Save the file and reference it when installing OKD.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.

Only the Proxy object named cluster is supported, and no additional proxies can be created.

Alternatives to storing administrator-level secrets in the kube-system project

By default, administrator secrets are stored in the kube-system project. If you configured the credentialsMode parameter in the install-config.yaml file to Manual, you must use one of the following alternatives:

Manually creating long-term credentials

The Cloud Credential Operator (CCO) can be put into manual mode prior to installation in environments where the cloud identity and access management (IAM) APIs are not reachable, or the administrator prefers not to store an administrator-level credential secret in the cluster kube-system namespace.

Procedure
  1. If you did not set the credentialsMode parameter in the install-config.yaml configuration file to Manual, modify the value as shown:

    Sample configuration file snippet
    apiVersion: v1
    baseDomain: example.com
    credentialsMode: Manual
    # ...
  2. If you have not previously created installation manifest files, do so by running the following command:

    $ openshift-install create manifests --dir <installation_directory>

    where <installation_directory> is the directory in which the installation program creates files.

  3. Set a $RELEASE_IMAGE variable with the release image from your installation file by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  4. Extract the list of CredentialsRequest custom resources (CRs) from the OKD release image by running the following command:

    $ oc adm release extract \
      --from=$RELEASE_IMAGE \
      --credentials-requests \
      --included \(1)
      --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \(2)
      --to=<path_to_directory_for_credentials_requests> (3)
    1 The --included parameter includes only the manifests that your specific cluster configuration requires.
    2 Specify the location of the install-config.yaml file.
    3 Specify the path to the directory where you want to store the CredentialsRequest objects. If the specified directory does not exist, this command creates it.

    This command creates a YAML file for each CredentialsRequest object.

    Sample CredentialsRequest object
    apiVersion: cloudcredential.openshift.io/v1
    kind: CredentialsRequest
    metadata:
      name: <component_credentials_request>
      namespace: openshift-cloud-credential-operator
      ...
    spec:
      providerSpec:
        apiVersion: cloudcredential.openshift.io/v1
        kind: AWSProviderSpec
        statementEntries:
        - effect: Allow
          action:
          - iam:GetUser
          - iam:GetUserPolicy
          - iam:ListAccessKeys
          resource: "*"
      ...
  5. Create YAML files for secrets in the openshift-install manifests directory that you generated previously. The secrets must be stored using the namespace and secret name defined in the spec.secretRef for each CredentialsRequest object.

    Sample CredentialsRequest object with secrets
    apiVersion: cloudcredential.openshift.io/v1
    kind: CredentialsRequest
    metadata:
      name: <component_credentials_request>
      namespace: openshift-cloud-credential-operator
      ...
    spec:
      providerSpec:
        apiVersion: cloudcredential.openshift.io/v1
        kind: AWSProviderSpec
        statementEntries:
        - effect: Allow
          action:
          - s3:CreateBucket
          - s3:DeleteBucket
          resource: "*"
          ...
      secretRef:
        name: <component_secret>
        namespace: <component_namespace>
      ...
    Sample Secret object
    apiVersion: v1
    kind: Secret
    metadata:
      name: <component_secret>
      namespace: <component_namespace>
    data:
      aws_access_key_id: <base64_encoded_aws_access_key_id>
      aws_secret_access_key: <base64_encoded_aws_secret_access_key>

Before upgrading a cluster that uses manually maintained credentials, you must ensure that the CCO is in an upgradeable state.

Configuring an AWS cluster to use short-term credentials

To install a cluster that is configured to use the AWS Security Token Service (STS), you must configure the CCO utility and create the required AWS resources for your cluster.

Configuring the Cloud Credential Operator utility

To create and manage cloud credentials from outside of the cluster when the Cloud Credential Operator (CCO) is operating in manual mode, extract and prepare the CCO utility (ccoctl) binary.

The ccoctl utility is a Linux binary that must run in a Linux environment.

Prerequisites
  • You have access to an OKD account with cluster administrator access.

  • You have installed the OpenShift CLI (oc).

  • You have created an AWS account for the ccoctl utility to use with the following permissions:

    Required AWS permissions

    Required iam permissions

    • iam:CreateOpenIDConnectProvider

    • iam:CreateRole

    • iam:DeleteOpenIDConnectProvider

    • iam:DeleteRole

    • iam:DeleteRolePolicy

    • iam:GetOpenIDConnectProvider

    • iam:GetRole

    • iam:GetUser

    • iam:ListOpenIDConnectProviders

    • iam:ListRolePolicies

    • iam:ListRoles

    • iam:PutRolePolicy

    • iam:TagOpenIDConnectProvider

    • iam:TagRole

    Required s3 permissions

    • s3:CreateBucket

    • s3:DeleteBucket

    • s3:DeleteObject

    • s3:GetBucketAcl

    • s3:GetBucketTagging

    • s3:GetObject

    • s3:GetObjectAcl

    • s3:GetObjectTagging

    • s3:ListBucket

    • s3:PutBucketAcl

    • s3:PutBucketPolicy

    • s3:PutBucketPublicAccessBlock

    • s3:PutBucketTagging

    • s3:PutObject

    • s3:PutObjectAcl

    • s3:PutObjectTagging

    Required cloudfront permissions

    • cloudfront:ListCloudFrontOriginAccessIdentities

    • cloudfront:ListDistributions

    • cloudfront:ListTagsForResource

    If you plan to store the OIDC configuration in a private S3 bucket that is accessed by the IAM identity provider through a public CloudFront distribution URL, the AWS account that runs the ccoctl utility requires the following additional permissions:

    Additional permissions for a private S3 bucket with CloudFront
    • cloudfront:CreateCloudFrontOriginAccessIdentity

    • cloudfront:CreateDistribution

    • cloudfront:DeleteCloudFrontOriginAccessIdentity

    • cloudfront:DeleteDistribution

    • cloudfront:GetCloudFrontOriginAccessIdentity

    • cloudfront:GetCloudFrontOriginAccessIdentityConfig

    • cloudfront:GetDistribution

    • cloudfront:TagResource

    • cloudfront:UpdateDistribution

    These additional permissions support the use of the --create-private-s3-bucket option when processing credentials requests with the ccoctl aws create-all command.

Procedure
  1. Obtain the OKD release image by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  2. Obtain the CCO container image from the OKD release image by running the following command:

    $ CCO_IMAGE=$(oc adm release info --image-for='cloud-credential-operator' $RELEASE_IMAGE -a ~/.pull-secret)

    Ensure that the architecture of the $RELEASE_IMAGE matches the architecture of the environment in which you will use the ccoctl tool.

  3. Extract the ccoctl binary from the CCO container image within the OKD release image by running the following command:

    $ oc image extract $CCO_IMAGE --file="/usr/bin/ccoctl" -a ~/.pull-secret
  4. Change the permissions to make ccoctl executable by running the following command:

    $ chmod 775 ccoctl
Verification
  • To verify that ccoctl is ready to use, display the help file by running the following command:

    $ ccoctl --help
    Output of ccoctl --help
    OpenShift credentials provisioning tool
    
    Usage:
      ccoctl [command]
    
    Available Commands:
      alibabacloud Manage credentials objects for alibaba cloud
      aws          Manage credentials objects for AWS cloud
      azure        Manage credentials objects for Azure
      gcp          Manage credentials objects for Google cloud
      help         Help about any command
      ibmcloud     Manage credentials objects for IBM Cloud
      nutanix      Manage credentials objects for Nutanix
    
    Flags:
      -h, --help   help for ccoctl
    
    Use "ccoctl [command] --help" for more information about a command.

Creating AWS resources with the Cloud Credential Operator utility

You have the following options when creating AWS resources:

  • You can use the ccoctl aws create-all command to create the AWS resources automatically. This is the quickest way to create the resources. See Creating AWS resources with a single command.

  • If you need to review the JSON files that the ccoctl tool creates before modifying AWS resources, or if the process the ccoctl tool uses to create AWS resources automatically does not meet the requirements of your organization, you can create the AWS resources individually. See Creating AWS resources individually.

Creating AWS resources with a single command

If the process the ccoctl tool uses to create AWS resources automatically meets the requirements of your organization, you can use the ccoctl aws create-all command to automate the creation of AWS resources.

Otherwise, you can create the AWS resources individually. For more information, see "Creating AWS resources individually".

By default, ccoctl creates objects in the directory in which the commands are run. To create the objects in a different directory, use the --output-dir flag. This procedure uses <path_to_ccoctl_output_dir> to refer to this directory.

Prerequisites

You must have:

  • Extracted and prepared the ccoctl binary.

Procedure
  1. Set a $RELEASE_IMAGE variable with the release image from your installation file by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  2. Extract the list of CredentialsRequest objects from the OKD release image by running the following command:

    $ oc adm release extract \
      --from=$RELEASE_IMAGE \
      --credentials-requests \
      --included \(1)
      --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \(2)
      --to=<path_to_directory_for_credentials_requests> (3)
    1 The --included parameter includes only the manifests that your specific cluster configuration requires.
    2 Specify the location of the install-config.yaml file.
    3 Specify the path to the directory where you want to store the CredentialsRequest objects. If the specified directory does not exist, this command creates it.

    This command might take a few moments to run.

  3. Use the ccoctl tool to process all CredentialsRequest objects by running the following command:

    $ ccoctl aws create-all \
      --name=<name> \(1)
      --region=<aws_region> \(2)
      --credentials-requests-dir=<path_to_credentials_requests_directory> \(3)
      --output-dir=<path_to_ccoctl_output_dir> \(4)
      --create-private-s3-bucket (5)
    1 Specify the name used to tag any cloud resources that are created for tracking.
    2 Specify the AWS region in which cloud resources will be created.
    3 Specify the directory containing the files for the component CredentialsRequest objects.
    4 Optional: Specify the directory in which you want the ccoctl utility to create objects. By default, the utility creates objects in the directory in which the commands are run.
    5 Optional: By default, the ccoctl utility stores the OpenID Connect (OIDC) configuration files in a public S3 bucket and uses the S3 URL as the public OIDC endpoint. To store the OIDC configuration in a private S3 bucket that is accessed by the IAM identity provider through a public CloudFront distribution URL instead, use the --create-private-s3-bucket parameter.

    If your cluster uses Technology Preview features that are enabled by the TechPreviewNoUpgrade feature set, you must include the --enable-tech-preview parameter.

Verification
  • To verify that the OKD secrets are created, list the files in the <path_to_ccoctl_output_dir>/manifests directory:

    $ ls <path_to_ccoctl_output_dir>/manifests
    Example output
    cluster-authentication-02-config.yaml
    openshift-cloud-credential-operator-cloud-credential-operator-iam-ro-creds-credentials.yaml
    openshift-cloud-network-config-controller-cloud-credentials-credentials.yaml
    openshift-cluster-api-capa-manager-bootstrap-credentials-credentials.yaml
    openshift-cluster-csi-drivers-ebs-cloud-credentials-credentials.yaml
    openshift-image-registry-installer-cloud-credentials-credentials.yaml
    openshift-ingress-operator-cloud-credentials-credentials.yaml
    openshift-machine-api-aws-cloud-credentials-credentials.yaml

    You can verify that the IAM roles are created by querying AWS. For more information, refer to AWS documentation on listing IAM roles.

Creating AWS resources individually

You can use the ccoctl tool to create AWS resources individually. This option might be useful for an organization that shares the responsibility for creating these resources among different users or departments.

Otherwise, you can use the ccoctl aws create-all command to create the AWS resources automatically. For more information, see "Creating AWS resources with a single command".

By default, ccoctl creates objects in the directory in which the commands are run. To create the objects in a different directory, use the --output-dir flag. This procedure uses <path_to_ccoctl_output_dir> to refer to this directory.

Some ccoctl commands make AWS API calls to create or modify AWS resources. You can use the --dry-run flag to avoid making API calls. Using this flag creates JSON files on the local file system instead. You can review and modify the JSON files and then apply them with the AWS CLI tool using the --cli-input-json parameters.

Prerequisites
  • Extract and prepare the ccoctl binary.

Procedure
  1. Generate the public and private RSA key files that are used to set up the OpenID Connect provider for the cluster by running the following command:

    $ ccoctl aws create-key-pair
    Example output
    2021/04/13 11:01:02 Generating RSA keypair
    2021/04/13 11:01:03 Writing private key to /<path_to_ccoctl_output_dir>/serviceaccount-signer.private
    2021/04/13 11:01:03 Writing public key to /<path_to_ccoctl_output_dir>/serviceaccount-signer.public
    2021/04/13 11:01:03 Copying signing key for use by installer

    where serviceaccount-signer.private and serviceaccount-signer.public are the generated key files.

    This command also creates a private key that the cluster requires during installation in /<path_to_ccoctl_output_dir>/tls/bound-service-account-signing-key.key.

  2. Create an OpenID Connect identity provider and S3 bucket on AWS by running the following command:

    $ ccoctl aws create-identity-provider \
      --name=<name> \(1)
      --region=<aws_region> \(2)
      --public-key-file=<path_to_ccoctl_output_dir>/serviceaccount-signer.public (3)
    1 <name> is the name used to tag any cloud resources that are created for tracking.
    2 <aws-region> is the AWS region in which cloud resources will be created.
    3 <path_to_ccoctl_output_dir> is the path to the public key file that the ccoctl aws create-key-pair command generated.
    Example output
    2021/04/13 11:16:09 Bucket <name>-oidc created
    2021/04/13 11:16:10 OpenID Connect discovery document in the S3 bucket <name>-oidc at .well-known/openid-configuration updated
    2021/04/13 11:16:10 Reading public key
    2021/04/13 11:16:10 JSON web key set (JWKS) in the S3 bucket <name>-oidc at keys.json updated
    2021/04/13 11:16:18 Identity Provider created with ARN: arn:aws:iam::<aws_account_id>:oidc-provider/<name>-oidc.s3.<aws_region>.amazonaws.com

    where openid-configuration is a discovery document and keys.json is a JSON web key set file.

    This command also creates a YAML configuration file in /<path_to_ccoctl_output_dir>/manifests/cluster-authentication-02-config.yaml. This file sets the issuer URL field for the service account tokens that the cluster generates, so that the AWS IAM identity provider trusts the tokens.

  3. Create IAM roles for each component in the cluster:

    1. Set a $RELEASE_IMAGE variable with the release image from your installation file by running the following command:

      $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
    2. Extract the list of CredentialsRequest objects from the OKD release image:

      $ oc adm release extract \
        --from=$RELEASE_IMAGE \
        --credentials-requests \
        --included \(1)
        --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \(2)
        --to=<path_to_directory_for_credentials_requests> (3)
      1 The --included parameter includes only the manifests that your specific cluster configuration requires.
      2 Specify the location of the install-config.yaml file.
      3 Specify the path to the directory where you want to store the CredentialsRequest objects. If the specified directory does not exist, this command creates it.
    3. Use the ccoctl tool to process all CredentialsRequest objects by running the following command:

      $ ccoctl aws create-iam-roles \
        --name=<name> \
        --region=<aws_region> \
        --credentials-requests-dir=<path_to_credentials_requests_directory> \
        --identity-provider-arn=arn:aws:iam::<aws_account_id>:oidc-provider/<name>-oidc.s3.<aws_region>.amazonaws.com

      For AWS environments that use alternative IAM API endpoints, such as GovCloud, you must also specify your region with the --region parameter.

      If your cluster uses Technology Preview features that are enabled by the TechPreviewNoUpgrade feature set, you must include the --enable-tech-preview parameter.

      For each CredentialsRequest object, ccoctl creates an IAM role with a trust policy that is tied to the specified OIDC identity provider, and a permissions policy as defined in each CredentialsRequest object from the OKD release image.

Verification
  • To verify that the OKD secrets are created, list the files in the <path_to_ccoctl_output_dir>/manifests directory:

    $ ls <path_to_ccoctl_output_dir>/manifests
    Example output
    cluster-authentication-02-config.yaml
    openshift-cloud-credential-operator-cloud-credential-operator-iam-ro-creds-credentials.yaml
    openshift-cloud-network-config-controller-cloud-credentials-credentials.yaml
    openshift-cluster-api-capa-manager-bootstrap-credentials-credentials.yaml
    openshift-cluster-csi-drivers-ebs-cloud-credentials-credentials.yaml
    openshift-image-registry-installer-cloud-credentials-credentials.yaml
    openshift-ingress-operator-cloud-credentials-credentials.yaml
    openshift-machine-api-aws-cloud-credentials-credentials.yaml

    You can verify that the IAM roles are created by querying AWS. For more information, refer to AWS documentation on listing IAM roles.

Incorporating the Cloud Credential Operator utility manifests

To implement short-term security credentials managed outside the cluster for individual components, you must move the manifest files that the Cloud Credential Operator utility (ccoctl) created to the correct directories for the installation program.

Prerequisites
  • You have configured an account with the cloud platform that hosts your cluster.

  • You have configured the Cloud Credential Operator utility (ccoctl).

  • You have created the cloud provider resources that are required for your cluster with the ccoctl utility.

Procedure
  1. If you did not set the credentialsMode parameter in the install-config.yaml configuration file to Manual, modify the value as shown:

    Sample configuration file snippet
    apiVersion: v1
    baseDomain: example.com
    credentialsMode: Manual
    # ...
  2. If you have not previously created installation manifest files, do so by running the following command:

    $ openshift-install create manifests --dir <installation_directory>

    where <installation_directory> is the directory in which the installation program creates files.

  3. Copy the manifests that the ccoctl utility generated to the manifests directory that the installation program created by running the following command:

    $ cp /<path_to_ccoctl_output_dir>/manifests/* ./manifests/
  4. Copy the private key that the ccoctl utility generated in the tls directory to the installation directory by running the following command:

    $ cp -a /<path_to_ccoctl_output_dir>/tls .

Deploying the cluster

You can install OKD on a compatible cloud platform.

You can run the create cluster command of the installation program only once, during initial installation.

Prerequisites
  • You have configured an account with the cloud platform that hosts your cluster.

  • You have the OKD installation program and the pull secret for your cluster.

  • You have verified that the cloud provider account on your host has the correct permissions to deploy the cluster. An account with incorrect permissions causes the installation process to fail with an error message that displays the missing permissions.

Procedure
  1. Change to the directory that contains the installation program and initialize the cluster deployment:

    $ ./openshift-install create cluster --dir <installation_directory> \ (1)
        --log-level=info (2)
    
    1 For <installation_directory>, specify the location of your customized ./install-config.yaml file.
    2 To view different installation details, specify warn, debug, or error instead of info.
  2. Optional: Remove or disable the AdministratorAccess policy from the IAM account that you used to install the cluster.

    The elevated permissions provided by the AdministratorAccess policy are required only during installation.

Verification

When the cluster deployment completes successfully:

  • The terminal displays directions for accessing your cluster, including a link to the web console and credentials for the kubeadmin user.

  • Credential information also outputs to <installation_directory>/.openshift_install.log.

Do not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.

Example output
...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s
  • The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.

  • It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.

Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OKD installation.

Prerequisites
  • You deployed an OKD cluster.

  • You installed the oc CLI.

Procedure
  1. Export the kubeadmin credentials:

    $ export KUBECONFIG=<installation_directory>/auth/kubeconfig (1)
    1 For <installation_directory>, specify the path to the directory that you stored the installation files in.
  2. Verify you can run oc commands successfully using the exported configuration:

    $ oc whoami
    Example output
    system:admin

Logging in to the cluster by using the web console

The kubeadmin user exists by default after an OKD installation. You can log in to your cluster as the kubeadmin user by using the OKD web console.

Prerequisites
  • You have access to the installation host.

  • You completed a cluster installation and all cluster Operators are available.

Procedure
  1. Obtain the password for the kubeadmin user from the kubeadmin-password file on the installation host:

    $ cat <installation_directory>/auth/kubeadmin-password

    Alternatively, you can obtain the kubeadmin password from the <installation_directory>/.openshift_install.log log file on the installation host.

  2. List the OKD web console route:

    $ oc get routes -n openshift-console | grep 'console-openshift'

    Alternatively, you can obtain the OKD route from the <installation_directory>/.openshift_install.log log file on the installation host.

    Example output
    console     console-openshift-console.apps.<cluster_name>.<base_domain>            console     https   reencrypt/Redirect   None
  3. Navigate to the route detailed in the output of the preceding command in a web browser and log in as the kubeadmin user.

Additional resources