VPC
In OKD version 4, you can install a cluster on Amazon Web Services (AWS) into the following secret regions:
Secret Commercial Cloud Services (SC2S)
Commercial Cloud Services (C2S)
To configure a cluster in either region, you change parameters in the install config.yaml
file before you install the cluster.
In OKD 4, the installation program uses Cluster API instead of Terraform to provision cluster infrastructure during installations on AWS. Installing a cluster on AWS into a secret or top-secret region by using the Cluster API implementation has not been tested as of the release of OKD 4. This document will be updated when installation into a secret region has been tested. There is a known issue with Network Load Balancers' support for security groups in secret or top secret regions that causes installations in these regions to fail. For more information, see OCPBUGS-33311. |
You reviewed details about the OKD installation and update processes.
You read the documentation on selecting a cluster installation method and preparing it for users.
You configured an AWS account to host the cluster.
If you have an AWS profile stored on your computer, it must not use a temporary session token that you generated while using a multifactor authentication device. The cluster continues to use your current AWS credentials to create AWS resources for the entire life of the cluster, so you must use long-term credentials. To generate appropriate keys, see Managing Access Keys for IAM Users in the AWS documentation. You can supply the keys when you run the installation program. |
If you use a firewall, you configured it to allow the sites that your cluster requires access to.
The following AWS secret partitions are supported:
us-isob-east-1
(SC2S)
us-iso-east-1
(C2S)
The maximum supported MTU in an AWS SC2S and C2S Regions is not the same as AWS commercial. For more information about configuring MTU during installation, see the Cluster Network Operator configuration object section in Installing a cluster on AWS with network customizations |
Red Hat does not publish a Fedora CoreOS (FCOS) Amzaon Machine Image for the AWS Secret and Top Secret Regions.
Before you can install the cluster, you must:
Upload a custom FCOS AMI.
Manually create the installation configuration file (install-config.yaml
).
Specify the AWS region, and the accompanying custom AMI, in the installation configuration file.
You cannot use the OKD installation program to create the installation configuration file. The installer does not list an AWS region without native support for an FCOS AMI.
You must also define a custom CA certificate in the |
You can deploy a private OKD cluster that does not expose external endpoints. Private clusters are accessible from only an internal network and are not visible to the internet.
Public zones are not supported in Route 53 in an AWS Top Secret Region. Therefore, clusters must be private if they are deployed to an AWS Top Secret Region. |
By default, OKD is provisioned to use publicly-accessible DNS and endpoints. A private cluster sets the DNS, Ingress Controller, and API server to private when you deploy your cluster. This means that the cluster resources are only accessible from your internal network and are not visible to the internet.
If the cluster has any public subnets, load balancer services created by administrators might be publicly accessible. To ensure cluster security, verify that these services are explicitly annotated as private. |
To deploy a private cluster, you must:
Use existing networking that meets your requirements. Your cluster resources might be shared between other clusters on the network.
Deploy from a machine that has access to:
The API services for the cloud to which you provision.
The hosts on the network that you provision.
The internet to obtain installation media.
You can use any machine that meets these access requirements and follows your company’s guidelines. For example, this machine can be a bastion host on your cloud network or a machine that has access to the network through a VPN.
To create a private cluster on Amazon Web Services (AWS), you must provide an existing private VPC and subnets to host the cluster. The installation program must also be able to resolve the DNS records that the cluster requires. The installation program configures the Ingress Operator and API server for access from only the private network.
The cluster still requires access to internet to access the AWS APIs.
The following items are not required or created when you install a private cluster:
Public subnets
Public load balancers, which support public ingress
A public Route 53 zone that matches the baseDomain
for the cluster
The installation program does use the baseDomain
that you specify to create a private Route 53 zone and the required records for the cluster. The cluster is configured so that the Operators do not create public records for the cluster and all cluster machines are placed in the private subnets that you specify.
The ability to add public functionality to a private cluster is limited.
You cannot make the Kubernetes API endpoints public after installation without taking additional actions, including creating public subnets in the VPC for each availability zone in use, creating a public load balancer, and configuring the control plane security groups to allow traffic from the internet on 6443 (Kubernetes API port).
If you use a public Service type load balancer, you must tag a public subnet in each availability zone with kubernetes.io/cluster/<cluster-infra-id>: shared
so that AWS can use them to create public load balancers.
In OKD 4, you can deploy a cluster into existing subnets in an existing Amazon Virtual Private Cloud (VPC) in Amazon Web Services (AWS). By deploying OKD into an existing AWS VPC, you might be able to avoid limit constraints in new accounts or more easily abide by the operational constraints that your company’s guidelines set. If you cannot obtain the infrastructure creation permissions that are required to create the VPC yourself, use this installation option.
Because the installation program cannot know what other components are also in your existing subnets, it cannot choose subnet CIDRs and so forth on your behalf. You must configure networking for the subnets that you install your cluster to yourself.
The installation program no longer creates the following components:
Internet gateways
NAT gateways
Subnets
Route tables
VPCs
VPC DHCP options
VPC endpoints
The installation program requires that you use the cloud-provided DNS server. Using a custom DNS server is not supported and causes the installation to fail. |
If you use a custom VPC, you must correctly configure it and its subnets for the installation program and the cluster to use. See Create a VPC in the Amazon Web Services documentation for more information about AWS VPC console wizard configurations and creating and managing an AWS VPC.
The installation program cannot:
Subdivide network ranges for the cluster to use.
Set route tables for the subnets.
Set VPC options like DHCP.
You must complete these tasks before you install the cluster. See VPC networking components and Route tables for your VPC for more information on configuring networking in an AWS VPC.
Your VPC must meet the following characteristics:
The VPC must not use the kubernetes.io/cluster/.*: owned
, Name
, and openshift.io/cluster
tags.
The installation program modifies your subnets to add the kubernetes.io/cluster/.*: shared
tag, so your subnets must have at least one free tag slot available for it. See Tag Restrictions in the AWS documentation to confirm that the installation program can add a tag to each subnet that you specify. You cannot use a Name
tag, because it overlaps with the EC2 Name
field and the installation fails.
If you want to extend your OKD cluster into an AWS Outpost and have an existing Outpost subnet, the existing subnet must use the kubernetes.io/cluster/unmanaged: true
tag. If you do not apply this tag, the installation might fail due to the Cloud Controller Manager creating a service load balancer in the Outpost subnet, which is an unsupported configuration.
You must enable the enableDnsSupport
and enableDnsHostnames
attributes in your VPC, so that the cluster can use the Route 53 zones that are attached to the VPC to resolve cluster’s internal DNS records. See DNS Support in Your VPC in the AWS documentation.
If you prefer to use your own Route 53 hosted private zone, you must associate the existing hosted zone with your VPC prior to installing a cluster. You can define your hosted zone using the platform.aws.hostedZone
and platform.aws.hostedZoneRole
fields in the install-config.yaml
file.
You can use a private hosted zone from another account by sharing it with the account where you install the cluster. If you use a private hosted zone from another account, you must use the Passthrough
or Manual
credentials mode.
A cluster in an SC2S or C2S Region is unable to reach the public IP addresses for the EC2, ELB, and S3 endpoints. Depending on the level to which you want to restrict internet traffic during the installation, the following configuration options are available:
Create a VPC endpoint and attach it to the subnets that the clusters are using. Name the endpoints as follows:
elasticloadbalancing.<aws_region>.sc2s.sgov.gov
ec2.<aws_region>.sc2s.sgov.gov
s3.<aws_region>.sc2s.sgov.gov
elasticloadbalancing.<aws_region>.c2s.ic.gov
ec2.<aws_region>.c2s.ic.gov
s3.<aws_region>.c2s.ic.gov
With this option, network traffic remains private between your VPC and the required AWS services.
As part of the installation process, you can configure an HTTP or HTTPS proxy. With this option, internet traffic goes through the proxy to reach the required AWS services.
As part of the installation process, you can configure an HTTP or HTTPS proxy with VPC endpoints. Create a VPC endpoint and attach it to the subnets that the clusters are using. Name the endpoints as follows:
elasticloadbalancing.<aws_region>.sc2s.sgov.gov
ec2.<aws_region>.sc2s.sgov.gov
s3.<aws_region>.sc2s.sgov.gov
elasticloadbalancing.<aws_region>.c2s.ic.gov
ec2.<aws_region>.c2s.ic.gov
s3.<aws_region>.c2s.ic.gov
When configuring the proxy in the install-config.yaml
file, add these endpoints to the noProxy
field. With this option, the proxy prevents the cluster from accessing the internet directly. However, network traffic remains private between your VPC and the required AWS services.
You must provide a suitable VPC and subnets that allow communication to your machines.
Component | AWS type | Description | |
---|---|---|---|
VPC |
|
You must provide a public VPC for the cluster to use. The VPC uses an endpoint that references the route tables for each subnet to improve communication with the registry that is hosted in S3. |
|
Public subnets |
|
Your VPC must have public subnets for between 1 and 3 availability zones and associate them with appropriate Ingress rules. |
|
Internet gateway |
|
You must have a public internet gateway, with public routes, attached to the VPC. In the provided templates, each public subnet has a NAT gateway with an EIP address. These NAT gateways allow cluster resources, like private subnet instances, to reach the internet and are not required for some restricted network or proxy scenarios. |
|
Network access control |
|
You must allow the VPC to access the following ports: |
|
Port |
Reason |
||
|
Inbound HTTP traffic |
||
|
Inbound HTTPS traffic |
||
|
Inbound SSH traffic |
||
|
Inbound ephemeral traffic |
||
|
Outbound ephemeral traffic |
||
Private subnets |
|
Your VPC can have private subnets. The provided CloudFormation templates can create private subnets for between 1 and 3 availability zones. If you use private subnets, you must provide appropriate routes and tables for them. |
To ensure that the subnets that you provide are suitable, the installation program confirms the following data:
All the subnets that you specify exist.
You provide private subnets.
The subnet CIDRs belong to the machine CIDR that you specified.
You provide subnets for each availability zone. Each availability zone contains no more than one public and one private subnet. If you use a private cluster, provide only a private subnet for each availability zone. Otherwise, provide exactly one public and private subnet for each availability zone.
You provide a public subnet for each private subnet availability zone. Machines are not provisioned in availability zones that you do not provide private subnets for.
If you destroy a cluster that uses an existing VPC, the VPC is not deleted. When you remove the OKD cluster from a VPC, the kubernetes.io/cluster/.*: shared
tag is removed from the subnets that it used.
Starting with OKD 4.3, you do not need all of the permissions that are required for an installation program-provisioned infrastructure cluster to deploy a cluster. This change mimics the division of permissions that you might have at your company: some individuals can create different resource in your clouds than others. For example, you might be able to create application-specific items, like instances, buckets, and load balancers, but not networking-related components such as VPCs, subnets, or ingress rules.
The AWS credentials that you use when you create your cluster do not need the networking permissions that are required to make VPCs and core networking components within the VPC, such as subnets, routing tables, internet gateways, NAT, and VPN. You still need permission to make the application resources that the machines within the cluster require, such as ELBs, security groups, S3 buckets, and nodes.
If you deploy OKD to an existing network, the isolation of cluster services is reduced in the following ways:
You can install multiple OKD clusters in the same VPC.
ICMP ingress is allowed from the entire network.
TCP 22 ingress (SSH) is allowed to the entire network.
Control plane TCP 6443 ingress (Kubernetes API) is allowed to the entire network.
Control plane TCP 22623 ingress (MCS) is allowed to the entire network.
By default, the installation program creates and attaches security groups to control plane and compute machines. The rules associated with the default security groups cannot be modified.
However, you can apply additional existing AWS security groups, which are associated with your existing VPC, to control plane and compute machines. Applying custom security groups can help you meet the security needs of your organization, in such cases where you need to control the incoming or outgoing traffic of these machines.
As part of the installation process, you apply custom security groups by modifying the install-config.yaml
file before deploying the cluster.
For more information, see "Applying existing AWS security groups to the cluster".
If you are deploying to a custom Amazon Web Services (AWS) region, you must upload a custom Fedora CoreOS (FCOS) Amazon Machine Image (AMI) that belongs to that region.
You configured an AWS account.
You created an Amazon S3 bucket with the required IAM service role.
You uploaded your FCOS VMDK file to Amazon S3.
You downloaded the AWS CLI and installed it on your computer. See Install the AWS CLI Using the Bundled Installer.
Export your AWS profile as an environment variable:
$ export AWS_PROFILE=<aws_profile> (1)
Export the region to associate with your custom AMI as an environment variable:
$ export AWS_DEFAULT_REGION=<aws_region> (1)
Export the version of FCOS you uploaded to Amazon S3 as an environment variable:
$ export RHCOS_VERSION=<version> (1)
1 | The FCOS VMDK version, like 4.0 . |
Export the Amazon S3 bucket name as an environment variable:
$ export VMIMPORT_BUCKET_NAME=<s3_bucket_name>
Create the containers.json
file and define your FCOS VMDK file:
$ cat <<EOF > containers.json
{
"Description": "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64",
"Format": "vmdk",
"UserBucket": {
"S3Bucket": "${VMIMPORT_BUCKET_NAME}",
"S3Key": "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64.vmdk"
}
}
EOF
Import the FCOS disk as an Amazon EBS snapshot:
$ aws ec2 import-snapshot --region ${AWS_DEFAULT_REGION} \
--description "<description>" \ (1)
--disk-container "file://<file_path>/containers.json" (2)
1 | The description of your FCOS disk being imported, like
rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64 . |
2 | The file path to the JSON file describing your FCOS disk. The JSON file should contain your Amazon S3 bucket name and key. |
Check the status of the image import:
$ watch -n 5 aws ec2 describe-import-snapshot-tasks --region ${AWS_DEFAULT_REGION}
{
"ImportSnapshotTasks": [
{
"Description": "rhcos-4.7.0-x86_64-aws.x86_64",
"ImportTaskId": "import-snap-fh6i8uil",
"SnapshotTaskDetail": {
"Description": "rhcos-4.7.0-x86_64-aws.x86_64",
"DiskImageSize": 819056640.0,
"Format": "VMDK",
"SnapshotId": "snap-06331325870076318",
"Status": "completed",
"UserBucket": {
"S3Bucket": "external-images",
"S3Key": "rhcos-4.7.0-x86_64-aws.x86_64.vmdk"
}
}
}
]
}
Copy the SnapshotId
to register the image.
Create a custom FCOS AMI from the FCOS snapshot:
$ aws ec2 register-image \
--region ${AWS_DEFAULT_REGION} \
--architecture x86_64 \ (1)
--description "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64" \ (2)
--ena-support \
--name "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64" \ (3)
--virtualization-type hvm \
--root-device-name '/dev/xvda' \
--block-device-mappings 'DeviceName=/dev/xvda,Ebs={DeleteOnTermination=true,SnapshotId=<snapshot_ID>}' (4)
1 | The FCOS VMDK architecture type, like x86_64 ,
s390x , or ppc64le . |
2 | The Description from the imported snapshot. |
3 | The name of the FCOS AMI. |
4 | The SnapshotID from the imported snapshot. |
To learn more about these APIs, see the AWS documentation for importing snapshots and creating EBS-backed AMIs.
Installing the cluster requires that you manually create the installation configuration file.
You have uploaded a custom RHCOS AMI.
You have an SSH public key on your local machine to provide to the installation program. The key will be used for SSH authentication onto your cluster nodes for debugging and disaster recovery.
You have obtained the OKD installation program and the pull secret for your cluster.
Create an installation directory to store your required installation assets in:
$ mkdir <installation_directory>
You must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OKD version. |
Customize the sample install-config.yaml
file template that is provided and save
it in the <installation_directory>
.
You must name this configuration file |
Back up the install-config.yaml
file so that you can use it to install multiple clusters.
The |
The following Amazon Web Services (AWS) instance types have been tested with OKD.
Use the machine types included in the following charts for your AWS instances. If you use an instance type that is not listed in the chart, ensure that the instance size you use matches the minimum resource requirements that are listed in the section named "Minimum resource requirements for cluster installation". |
c4.*
c5.*
i3.*
m4.*
m5.*
r4.*
r5.*
t3.*
You can customize the installation configuration file (install-config.yaml
) to specify more details about your OKD cluster’s platform or modify the values of the required parameters.
This sample YAML file is provided for reference only. Use it as a resource to enter parameter values into the installation configuration file that you created manually. |
apiVersion: v1
baseDomain: example.com (1)
credentialsMode: Mint (2)
controlPlane: (3) (4)
hyperthreading: Enabled (5)
name: master
platform:
aws:
zones:
- us-iso-east-1a
- us-iso-east-1b
rootVolume:
iops: 4000
size: 500
type: io1 (6)
metadataService:
authentication: Optional (7)
type: m6i.xlarge
replicas: 3
compute: (3)
- hyperthreading: Enabled (5)
name: worker
platform:
aws:
rootVolume:
iops: 2000
size: 500
type: io1 (6)
metadataService:
authentication: Optional (7)
type: c5.4xlarge
zones:
- us-iso-east-1a
- us-iso-east-1b
replicas: 3
metadata:
name: test-cluster (1)
networking:
clusterNetwork:
- cidr: 10.128.0.0/14
hostPrefix: 23
machineNetwork:
- cidr: 10.0.0.0/16
networkType: OVNKubernetes (8)
serviceNetwork:
- 172.30.0.0/16
platform:
aws:
region: us-iso-east-1 (1)
propagateUserTags: true (3)
userTags:
adminContact: jdoe
costCenter: 7536
subnets: (9)
- subnet-1
- subnet-2
- subnet-3
amiID: ami-96c6f8f7 (1) (10)
serviceEndpoints: (11)
- name: ec2
url: https://vpce-id.ec2.us-west-2.vpce.amazonaws.com
hostedZone: Z3URY6TWQ91KVV (12)
sshKey: ssh-ed25519 AAAA... (13)
pullSecret: '{"auths": ...}' (1)
publish: Internal (14)
additionalTrustBundle: | (15)
-----BEGIN CERTIFICATE-----
<MY_TRUSTED_CA_CERT>
-----END CERTIFICATE-----
1 | Required. | ||
2 | Optional: Add this parameter to force the Cloud Credential Operator (CCO) to use the specified mode. By default, the CCO uses the root credentials in the kube-system namespace to dynamically try to determine the capabilities of the credentials. For details about CCO modes, see the "About the Cloud Credential Operator" section in the Authentication and authorization guide. |
||
3 | If you do not provide these parameters and values, the installation program provides the default value. | ||
4 | The controlPlane section is a single mapping, but the compute section is a
sequence of mappings. To meet the requirements of the different data structures,
the first line of the compute section must begin with a hyphen, - , and the
first line of the controlPlane section must not. Only one control plane pool is used. |
||
5 | Whether to enable or disable simultaneous multithreading, or
hyperthreading . By default, simultaneous multithreading is enabled
to increase the performance of your machines' cores. You can disable it by
setting the parameter value to Disabled . If you disable simultaneous
multithreading in some cluster machines, you must disable it in all cluster
machines.
|
||
6 | To configure faster storage for etcd, especially for larger clusters, set the storage type as io1 and set iops to 2000 . |
||
7 | Whether to require the Amazon EC2 Instance Metadata Service v2 (IMDSv2). To require IMDSv2, set the parameter value to Required . To allow the use of both IMDSv1 and IMDSv2, set the parameter value to Optional . If no value is specified, both IMDSv1 and IMDSv2 are allowed.
|
||
8 | The cluster network plugin to install. The default value OVNKubernetes is the only supported value. |
||
9 | If you provide your own VPC, specify subnets for each availability zone that your cluster uses. | ||
10 | The ID of the AMI used to boot machines for the cluster. If set, the AMI must belong to the same region as the cluster. | ||
11 | The AWS service endpoints. Custom endpoints are required when installing to
an unknown AWS region. The endpoint URL must use the https protocol and the
host must trust the certificate. |
||
12 | The ID of your existing Route 53 private hosted zone. Providing an existing hosted zone requires that you supply your own VPC and the hosted zone is already associated with the VPC prior to installing your cluster. If undefined, the installation program creates a new hosted zone. | ||
13 | You can optionally provide the sshKey value that you use to access the machines in your cluster.
|
||
14 | How to publish the user-facing endpoints of your cluster. Set publish to Internal to deploy a private cluster, which cannot be accessed from the internet. The default value is External . |
||
15 | The custom CA certificate. This is required when deploying to the SC2S or C2S Regions because the AWS API requires a custom CA trust bundle. |
Production environments can deny direct access to the internet and instead have
an HTTP or HTTPS proxy available. You can configure a new OKD
cluster to use a proxy by configuring the proxy settings in the
install-config.yaml
file.
You have an existing install-config.yaml
file.
You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy
object’s spec.noProxy
field to bypass the proxy if necessary.
The For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and OpenStack, the |
Edit your install-config.yaml
file and add the proxy settings. For example:
apiVersion: v1
baseDomain: my.domain.com
proxy:
httpProxy: http://<username>:<pswd>@<ip>:<port> (1)
httpsProxy: https://<username>:<pswd>@<ip>:<port> (2)
noProxy: ec2.<aws_region>.amazonaws.com,elasticloadbalancing.<aws_region>.amazonaws.com,s3.<aws_region>.amazonaws.com (3)
additionalTrustBundle: | (4)
-----BEGIN CERTIFICATE-----
<MY_TRUSTED_CA_CERT>
-----END CERTIFICATE-----
additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> (5)
1 | A proxy URL to use for creating HTTP connections outside the cluster. The
URL scheme must be http . |
2 | A proxy URL to use for creating HTTPS connections outside the cluster. |
3 | A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com , but not y.com . Use * to bypass the proxy for all destinations.
If you have added the Amazon EC2 ,Elastic Load Balancing , and S3 VPC endpoints to your VPC, you must add these endpoints to the noProxy field. |
4 | If provided, the installation program generates a config map that is named user-ca-bundle in
the openshift-config namespace to hold the additional CA
certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network
Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter
with the FCOS trust bundle. The additionalTrustBundle field is required unless
the proxy’s identity certificate is signed by an authority from the FCOS trust
bundle. |
5 | Optional: The policy to determine the configuration of the Proxy object to reference the user-ca-bundle config map in the trustedCA field. The allowed values are Proxyonly and Always . Use Proxyonly to reference the user-ca-bundle config map only when http/https proxy is configured. Use Always to always reference the user-ca-bundle config map. The default value is Proxyonly . |
The installation program does not support the proxy |
If the installer times out, restart and then complete the deployment by using the
|
Save the file and reference it when installing OKD.
The installation program creates a cluster-wide proxy that is named cluster
that uses the proxy
settings in the provided install-config.yaml
file. If no proxy settings are
provided, a cluster
Proxy
object is still created, but it will have a nil
spec
.
Only the |
Applying existing AWS security groups to your control plane and compute machines can help you meet the security needs of your organization, in such cases where you need to control the incoming or outgoing traffic of these machines.
You have created the security groups in AWS. For more information, see the AWS documentation about working with security groups.
The security groups must be associated with the existing VPC that you are deploying the cluster to. The security groups cannot be associated with another VPC.
You have an existing install-config.yaml
file.
In the install-config.yaml
file, edit the compute.platform.aws.additionalSecurityGroupIDs
parameter to specify one or more custom security groups for your compute machines.
Edit the controlPlane.platform.aws.additionalSecurityGroupIDs
parameter to specify one or more custom security groups for your control plane machines.
Save the file and reference it when deploying the cluster.
install-config.yaml
file that specifies custom security groups# ...
compute:
- hyperthreading: Enabled
name: worker
platform:
aws:
additionalSecurityGroupIDs:
- sg-1 (1)
- sg-2
replicas: 3
controlPlane:
hyperthreading: Enabled
name: master
platform:
aws:
additionalSecurityGroupIDs:
- sg-3
- sg-4
replicas: 3
platform:
aws:
region: us-east-1
subnets: (2)
- subnet-1
- subnet-2
- subnet-3
1 | Specify the name of the security group as it appears in the Amazon EC2 console, including the sg prefix. |
2 | Specify subnets for each availability zone that your cluster uses. |
By default, administrator secrets are stored in the kube-system
project. If you configured the credentialsMode
parameter in the install-config.yaml
file to Manual
, you must use one of the following alternatives:
To manage long-term cloud credentials manually, follow the procedure in Manually creating long-term credentials.
To implement short-term credentials that are managed outside the cluster for individual components, follow the procedures in Configuring an AWS cluster to use short-term credentials.
The Cloud Credential Operator (CCO) can be put into manual mode prior to installation in environments where the cloud identity and access management (IAM) APIs are not reachable, or the administrator prefers not to store an administrator-level credential secret in the cluster kube-system
namespace.
If you did not set the credentialsMode
parameter in the install-config.yaml
configuration file to Manual
, modify the value as shown:
apiVersion: v1
baseDomain: example.com
credentialsMode: Manual
# ...
If you have not previously created installation manifest files, do so by running the following command:
$ openshift-install create manifests --dir <installation_directory>
where <installation_directory>
is the directory in which the installation program creates files.
Set a $RELEASE_IMAGE
variable with the release image from your installation file by running the following command:
$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
Extract the list of CredentialsRequest
custom resources (CRs) from the OKD release image by running the following command:
$ oc adm release extract \
--from=$RELEASE_IMAGE \
--credentials-requests \
--included \(1)
--install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \(2)
--to=<path_to_directory_for_credentials_requests> (3)
1 | The --included parameter includes only the manifests that your specific cluster configuration requires. |
2 | Specify the location of the install-config.yaml file. |
3 | Specify the path to the directory where you want to store the CredentialsRequest objects. If the specified directory does not exist, this command creates it. |
This command creates a YAML file for each CredentialsRequest
object.
CredentialsRequest
objectapiVersion: cloudcredential.openshift.io/v1
kind: CredentialsRequest
metadata:
name: <component_credentials_request>
namespace: openshift-cloud-credential-operator
...
spec:
providerSpec:
apiVersion: cloudcredential.openshift.io/v1
kind: AWSProviderSpec
statementEntries:
- effect: Allow
action:
- iam:GetUser
- iam:GetUserPolicy
- iam:ListAccessKeys
resource: "*"
...
Create YAML files for secrets in the openshift-install
manifests directory that you generated previously. The secrets must be stored using the namespace and secret name defined in the spec.secretRef
for each CredentialsRequest
object.
CredentialsRequest
object with secretsapiVersion: cloudcredential.openshift.io/v1
kind: CredentialsRequest
metadata:
name: <component_credentials_request>
namespace: openshift-cloud-credential-operator
...
spec:
providerSpec:
apiVersion: cloudcredential.openshift.io/v1
kind: AWSProviderSpec
statementEntries:
- effect: Allow
action:
- s3:CreateBucket
- s3:DeleteBucket
resource: "*"
...
secretRef:
name: <component_secret>
namespace: <component_namespace>
...
Secret
objectapiVersion: v1
kind: Secret
metadata:
name: <component_secret>
namespace: <component_namespace>
data:
aws_access_key_id: <base64_encoded_aws_access_key_id>
aws_secret_access_key: <base64_encoded_aws_secret_access_key>
Before upgrading a cluster that uses manually maintained credentials, you must ensure that the CCO is in an upgradeable state. |
To install a cluster that is configured to use the AWS Security Token Service (STS), you must configure the CCO utility and create the required AWS resources for your cluster.
To create and manage cloud credentials from outside of the cluster when the Cloud Credential Operator (CCO) is operating in manual mode, extract and prepare the CCO utility (ccoctl
) binary.
The |
You have access to an OKD account with cluster administrator access.
You have installed the OpenShift CLI (oc
).
You have created an AWS account for the ccoctl
utility to use with the following permissions:
Required iam
permissions
iam:CreateOpenIDConnectProvider
iam:CreateRole
iam:DeleteOpenIDConnectProvider
iam:DeleteRole
iam:DeleteRolePolicy
iam:GetOpenIDConnectProvider
iam:GetRole
iam:GetUser
iam:ListOpenIDConnectProviders
iam:ListRolePolicies
iam:ListRoles
iam:PutRolePolicy
iam:TagOpenIDConnectProvider
iam:TagRole
Required s3
permissions
s3:CreateBucket
s3:DeleteBucket
s3:DeleteObject
s3:GetBucketAcl
s3:GetBucketTagging
s3:GetObject
s3:GetObjectAcl
s3:GetObjectTagging
s3:ListBucket
s3:PutBucketAcl
s3:PutBucketPolicy
s3:PutBucketPublicAccessBlock
s3:PutBucketTagging
s3:PutObject
s3:PutObjectAcl
s3:PutObjectTagging
Required cloudfront
permissions
cloudfront:ListCloudFrontOriginAccessIdentities
cloudfront:ListDistributions
cloudfront:ListTagsForResource
If you plan to store the OIDC configuration in a private S3 bucket that is accessed by the IAM identity provider through a public CloudFront distribution URL, the AWS account that runs the ccoctl
utility requires the following additional permissions:
cloudfront:CreateCloudFrontOriginAccessIdentity
cloudfront:CreateDistribution
cloudfront:DeleteCloudFrontOriginAccessIdentity
cloudfront:DeleteDistribution
cloudfront:GetCloudFrontOriginAccessIdentity
cloudfront:GetCloudFrontOriginAccessIdentityConfig
cloudfront:GetDistribution
cloudfront:TagResource
cloudfront:UpdateDistribution
These additional permissions support the use of the |
Set a variable for the OKD release image by running the following command:
$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
Obtain the CCO container image from the OKD release image by running the following command:
$ CCO_IMAGE=$(oc adm release info --image-for='cloud-credential-operator' $RELEASE_IMAGE -a ~/.pull-secret)
Ensure that the architecture of the |
Extract the ccoctl
binary from the CCO container image within the OKD release image by running the following command:
$ oc image extract $CCO_IMAGE \
--file="/usr/bin/ccoctl.<rhel_version>" \(1)
-a ~/.pull-secret
1 | For <rhel_version> , specify the value that corresponds to the version of Fedora that the host uses.
If no value is specified, ccoctl.rhel8 is used by default.
The following values are valid:
|
Change the permissions to make ccoctl
executable by running the following command:
$ chmod 775 ccoctl.<rhel_version>
To verify that ccoctl
is ready to use, display the help file. Use a relative file name when you run the command, for example:
$ ./ccoctl.rhel9
OpenShift credentials provisioning tool
Usage:
ccoctl [command]
Available Commands:
aws Manage credentials objects for AWS cloud
azure Manage credentials objects for Azure
gcp Manage credentials objects for Google cloud
help Help about any command
ibmcloud Manage credentials objects for IBM Cloud
nutanix Manage credentials objects for Nutanix
Flags:
-h, --help help for ccoctl
Use "ccoctl [command] --help" for more information about a command.
You have the following options when creating AWS resources:
You can use the ccoctl aws create-all
command to create the AWS resources automatically. This is the quickest way to create the resources. See Creating AWS resources with a single command.
If you need to review the JSON files that the ccoctl
tool creates before modifying AWS resources, or if the process the ccoctl
tool uses to create AWS resources automatically does not meet the requirements of your organization, you can create the AWS resources individually. See Creating AWS resources individually.
If the process the ccoctl
tool uses to create AWS resources automatically meets the requirements of your organization, you can use the ccoctl aws create-all
command to automate the creation of AWS resources.
Otherwise, you can create the AWS resources individually. For more information, see "Creating AWS resources individually".
By default, |
You must have:
Extracted and prepared the ccoctl
binary.
Set a $RELEASE_IMAGE
variable with the release image from your installation file by running the following command:
$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
Extract the list of CredentialsRequest
objects from the OKD release image by running the following command:
$ oc adm release extract \
--from=$RELEASE_IMAGE \
--credentials-requests \
--included \(1)
--install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \(2)
--to=<path_to_directory_for_credentials_requests> (3)
1 | The --included parameter includes only the manifests that your specific cluster configuration requires. |
2 | Specify the location of the install-config.yaml file. |
3 | Specify the path to the directory where you want to store the CredentialsRequest objects. If the specified directory does not exist, this command creates it. |
This command might take a few moments to run. |
Use the ccoctl
tool to process all CredentialsRequest
objects by running the following command:
$ ccoctl aws create-all \
--name=<name> \(1)
--region=<aws_region> \(2)
--credentials-requests-dir=<path_to_credentials_requests_directory> \(3)
--output-dir=<path_to_ccoctl_output_dir> \(4)
--create-private-s3-bucket (5)
1 | Specify the name used to tag any cloud resources that are created for tracking. |
2 | Specify the AWS region in which cloud resources will be created. |
3 | Specify the directory containing the files for the component CredentialsRequest objects. |
4 | Optional: Specify the directory in which you want the ccoctl utility to create objects. By default, the utility creates objects in the directory in which the commands are run. |
5 | Optional: By default, the ccoctl utility stores the OpenID Connect (OIDC) configuration files in a public S3 bucket and uses the S3 URL as the public OIDC endpoint. To store the OIDC configuration in a private S3 bucket that is accessed by the IAM identity provider through a public CloudFront distribution URL instead, use the --create-private-s3-bucket parameter. |
If your cluster uses Technology Preview features that are enabled by the |
To verify that the OKD secrets are created, list the files in the <path_to_ccoctl_output_dir>/manifests
directory:
$ ls <path_to_ccoctl_output_dir>/manifests
cluster-authentication-02-config.yaml
openshift-cloud-credential-operator-cloud-credential-operator-iam-ro-creds-credentials.yaml
openshift-cloud-network-config-controller-cloud-credentials-credentials.yaml
openshift-cluster-api-capa-manager-bootstrap-credentials-credentials.yaml
openshift-cluster-csi-drivers-ebs-cloud-credentials-credentials.yaml
openshift-image-registry-installer-cloud-credentials-credentials.yaml
openshift-ingress-operator-cloud-credentials-credentials.yaml
openshift-machine-api-aws-cloud-credentials-credentials.yaml
You can verify that the IAM roles are created by querying AWS. For more information, refer to AWS documentation on listing IAM roles.
You can use the ccoctl
tool to create AWS resources individually. This option might be useful for an organization that shares the responsibility for creating these resources among different users or departments.
Otherwise, you can use the ccoctl aws create-all
command to create the AWS resources automatically. For more information, see "Creating AWS resources with a single command".
By default, Some |
Extract and prepare the ccoctl
binary.
Generate the public and private RSA key files that are used to set up the OpenID Connect provider for the cluster by running the following command:
$ ccoctl aws create-key-pair
2021/04/13 11:01:02 Generating RSA keypair
2021/04/13 11:01:03 Writing private key to /<path_to_ccoctl_output_dir>/serviceaccount-signer.private
2021/04/13 11:01:03 Writing public key to /<path_to_ccoctl_output_dir>/serviceaccount-signer.public
2021/04/13 11:01:03 Copying signing key for use by installer
where serviceaccount-signer.private
and serviceaccount-signer.public
are the generated key files.
This command also creates a private key that the cluster requires during installation in /<path_to_ccoctl_output_dir>/tls/bound-service-account-signing-key.key
.
Create an OpenID Connect identity provider and S3 bucket on AWS by running the following command:
$ ccoctl aws create-identity-provider \
--name=<name> \(1)
--region=<aws_region> \(2)
--public-key-file=<path_to_ccoctl_output_dir>/serviceaccount-signer.public (3)
1 | <name> is the name used to tag any cloud resources that are created for tracking. |
2 | <aws-region> is the AWS region in which cloud resources will be created. |
3 | <path_to_ccoctl_output_dir> is the path to the public key file that the ccoctl aws create-key-pair command generated. |
2021/04/13 11:16:09 Bucket <name>-oidc created
2021/04/13 11:16:10 OpenID Connect discovery document in the S3 bucket <name>-oidc at .well-known/openid-configuration updated
2021/04/13 11:16:10 Reading public key
2021/04/13 11:16:10 JSON web key set (JWKS) in the S3 bucket <name>-oidc at keys.json updated
2021/04/13 11:16:18 Identity Provider created with ARN: arn:aws:iam::<aws_account_id>:oidc-provider/<name>-oidc.s3.<aws_region>.amazonaws.com
where openid-configuration
is a discovery document and keys.json
is a JSON web key set file.
This command also creates a YAML configuration file in /<path_to_ccoctl_output_dir>/manifests/cluster-authentication-02-config.yaml
. This file sets the issuer URL field for the service account tokens that the cluster generates, so that the AWS IAM identity provider trusts the tokens.
Create IAM roles for each component in the cluster:
Set a $RELEASE_IMAGE
variable with the release image from your installation file by running the following command:
$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
Extract the list of CredentialsRequest
objects from the OKD release image:
$ oc adm release extract \
--from=$RELEASE_IMAGE \
--credentials-requests \
--included \(1)
--install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \(2)
--to=<path_to_directory_for_credentials_requests> (3)
1 | The --included parameter includes only the manifests that your specific cluster configuration requires. |
2 | Specify the location of the install-config.yaml file. |
3 | Specify the path to the directory where you want to store the CredentialsRequest objects. If the specified directory does not exist, this command creates it. |
Use the ccoctl
tool to process all CredentialsRequest
objects by running the following command:
$ ccoctl aws create-iam-roles \
--name=<name> \
--region=<aws_region> \
--credentials-requests-dir=<path_to_credentials_requests_directory> \
--identity-provider-arn=arn:aws:iam::<aws_account_id>:oidc-provider/<name>-oidc.s3.<aws_region>.amazonaws.com
For AWS environments that use alternative IAM API endpoints, such as GovCloud, you must also specify your region with the If your cluster uses Technology Preview features that are enabled by the |
For each CredentialsRequest
object, ccoctl
creates an IAM role with a trust policy that is tied to the specified OIDC identity provider, and a permissions policy as defined in each CredentialsRequest
object from the OKD release image.
To verify that the OKD secrets are created, list the files in the <path_to_ccoctl_output_dir>/manifests
directory:
$ ls <path_to_ccoctl_output_dir>/manifests
cluster-authentication-02-config.yaml
openshift-cloud-credential-operator-cloud-credential-operator-iam-ro-creds-credentials.yaml
openshift-cloud-network-config-controller-cloud-credentials-credentials.yaml
openshift-cluster-api-capa-manager-bootstrap-credentials-credentials.yaml
openshift-cluster-csi-drivers-ebs-cloud-credentials-credentials.yaml
openshift-image-registry-installer-cloud-credentials-credentials.yaml
openshift-ingress-operator-cloud-credentials-credentials.yaml
openshift-machine-api-aws-cloud-credentials-credentials.yaml
You can verify that the IAM roles are created by querying AWS. For more information, refer to AWS documentation on listing IAM roles.
To implement short-term security credentials managed outside the cluster for individual components, you must move the manifest files that the Cloud Credential Operator utility (ccoctl
) created to the correct directories for the installation program.
You have configured an account with the cloud platform that hosts your cluster.
You have configured the Cloud Credential Operator utility (ccoctl
).
You have created the cloud provider resources that are required for your cluster with the ccoctl
utility.
If you did not set the credentialsMode
parameter in the install-config.yaml
configuration file to Manual
, modify the value as shown:
apiVersion: v1
baseDomain: example.com
credentialsMode: Manual
# ...
If you have not previously created installation manifest files, do so by running the following command:
$ openshift-install create manifests --dir <installation_directory>
where <installation_directory>
is the directory in which the installation program creates files.
Copy the manifests that the ccoctl
utility generated to the manifests
directory that the installation program created by running the following command:
$ cp /<path_to_ccoctl_output_dir>/manifests/* ./manifests/
Copy the tls
directory that contains the private key to the installation directory:
$ cp -a /<path_to_ccoctl_output_dir>/tls .
You can install OKD on a compatible cloud platform.
You can run the |
You have configured an account with the cloud platform that hosts your cluster.
You have the OKD installation program and the pull secret for your cluster.
You have verified that the cloud provider account on your host has the correct permissions to deploy the cluster. An account with incorrect permissions causes the installation process to fail with an error message that displays the missing permissions.
Change to the directory that contains the installation program and initialize the cluster deployment:
$ ./openshift-install create cluster --dir <installation_directory> \ (1)
--log-level=info (2)
1 | For <installation_directory> , specify the
location of your customized ./install-config.yaml file. |
2 | To view different installation details, specify warn , debug , or
error instead of info . |
Optional: Remove or disable the AdministratorAccess
policy from the IAM
account that you used to install the cluster.
The elevated permissions provided by the |
When the cluster deployment completes successfully:
The terminal displays directions for accessing your cluster, including a link to the web console and credentials for the kubeadmin
user.
Credential information also outputs to <installation_directory>/.openshift_install.log
.
Do not delete the installation program or the files that the installation program creates. Both are required to delete the cluster. |
...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s
|
You can log in to your cluster as a default system user by exporting the cluster kubeconfig
file.
The kubeconfig
file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server.
The file is specific to a cluster and is created during OKD installation.
You deployed an OKD cluster.
You installed the oc
CLI.
Export the kubeadmin
credentials:
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig (1)
1 | For <installation_directory> , specify the path to the directory that you stored
the installation files in. |
Verify you can run oc
commands successfully using the exported configuration:
$ oc whoami
system:admin
The kubeadmin
user exists by default after an OKD installation. You can log in to your cluster as the kubeadmin
user by using the OKD web console.
You have access to the installation host.
You completed a cluster installation and all cluster Operators are available.
Obtain the password for the kubeadmin
user from the kubeadmin-password
file on the installation host:
$ cat <installation_directory>/auth/kubeadmin-password
Alternatively, you can obtain the |
List the OKD web console route:
$ oc get routes -n openshift-console | grep 'console-openshift'
Alternatively, you can obtain the OKD route from the |
console console-openshift-console.apps.<cluster_name>.<base_domain> console https reencrypt/Redirect None
Navigate to the route detailed in the output of the preceding command in a web browser and log in as the kubeadmin
user.
If necessary, you can opt out of remote health reporting.
If necessary, you can remove cloud provider credentials.