$ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> (1)
In OKD 4, you can install a cluster on Google Cloud Platform (GCP) in a restricted network by creating an internal mirror of the installation release content on an existing Google Virtual Private Cloud (VPC).
You can install an OKD cluster by using mirrored installation release content, but your cluster will require internet access to use the GCP APIs. |
You reviewed details about the OKD installation and update processes.
You read the documentation on selecting a cluster installation method and preparing it for users.
You configured a GCP project to host the cluster.
You mirrored the images for a disconnected installation to your registry and obtained the imageContentSources
data for your version of OKD.
Because the installation media is on the mirror host, you can use that computer to complete all installation steps. |
You have an existing VPC in GCP. While installing a cluster in a restricted network that uses installer-provisioned infrastructure, you cannot use the installer-provisioned VPC. You must use a user-provisioned VPC that satisfies one of the following requirements:
Contains the mirror registry
Has firewall rules or a peering connection to access the mirror registry hosted elsewhere
If you use a firewall, you configured it to allow the sites that your cluster requires access to. While you might need to grant access to more sites, you must grant access to *.googleapis.com
and accounts.google.com
.
In OKD 4, you can perform an installation that does not require an active connection to the internet to obtain software components. Restricted network installations can be completed using installer-provisioned infrastructure or user-provisioned infrastructure, depending on the cloud platform to which you are installing the cluster.
If you choose to perform a restricted network installation on a cloud platform, you still require access to its cloud APIs. Some cloud functions, like Amazon Web Service’s Route 53 DNS and IAM services, require internet access. Depending on your network, you might require less internet access for an installation on bare metal hardware, Nutanix, or on VMware vSphere.
To complete a restricted network installation, you must create a registry that mirrors the contents of the OpenShift image registry and contains the installation media. You can create this registry on a mirror host, which can access both the internet and your closed network, or by using other methods that meet your restrictions.
Clusters in restricted networks have the following additional limitations and restrictions:
The ClusterVersion
status includes an Unable to retrieve available updates
error.
By default, you cannot use the contents of the Developer Catalog because you cannot access the required image stream tags.
During an OKD installation, you can provide an SSH public key to the installation program. The key is passed to the Fedora CoreOS (FCOS) nodes through their Ignition config files and is used to authenticate SSH access to the nodes. The key is added to the ~/.ssh/authorized_keys
list for the core
user on each node, which enables password-less authentication.
After the key is passed to the nodes, you can use the key pair to SSH in to the FCOS nodes as the user core
. To access the nodes through SSH, the private key identity must be managed by SSH for your local user.
If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you must provide the SSH public key during the installation process. The ./openshift-install gather
command also requires the SSH public key to be in place on the cluster nodes.
Do not skip this procedure in production environments, where disaster recovery and debugging is required. |
You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs. |
On clusters running Fedora CoreOS (FCOS), the SSH keys specified in the Ignition config files are written to the |
If you do not have an existing SSH key pair on your local machine to use for authentication onto your cluster nodes, create one. For example, on a computer that uses a Linux operating system, run the following command:
$ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> (1)
1 | Specify the path and file name, such as ~/.ssh/id_ed25519 , of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory. |
If you plan to install an OKD cluster that uses the Fedora cryptographic libraries that have been submitted to NIST for FIPS 140-2/140-3 Validation on only the |
View the public SSH key:
$ cat <path>/<file_name>.pub
For example, run the following to view the ~/.ssh/id_ed25519.pub
public key:
$ cat ~/.ssh/id_ed25519.pub
Add the SSH private key identity to the SSH agent for your local user, if it has not already been added. SSH agent management of the key is required for password-less SSH authentication onto your cluster nodes, or if you want to use the ./openshift-install gather
command.
On some distributions, default SSH private key identities such as |
If the ssh-agent
process is not already running for your local user, start it as a background task:
$ eval "$(ssh-agent -s)"
Agent pid 31874
If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA. |
Add your SSH private key to the ssh-agent
:
$ ssh-add <path>/<file_name> (1)
1 | Specify the path and file name for your SSH private key, such as ~/.ssh/id_ed25519 |
Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
When you install OKD, provide the SSH public key to the installation program.
You can customize the OKD cluster you install on Google Cloud Platform (GCP).
You have the OKD installation program and the pull secret for your cluster. For a restricted network installation, these files are on your mirror host.
You have the imageContentSources
values that were generated during mirror registry creation.
You have obtained the contents of the certificate for your mirror registry.
Create the install-config.yaml
file.
Change to the directory that contains the installation program and run the following command:
$ ./openshift-install create install-config --dir <installation_directory> (1)
1 | For <installation_directory> , specify the directory name to store the
files that the installation program creates. |
When specifying the directory:
Verify that the directory has the execute
permission. This permission is required to run Terraform binaries under the installation directory.
Use an empty directory. Some installation assets, such as bootstrap X.509 certificates, have short expiration intervals, therefore you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OKD version.
At the prompts, provide the configuration details for your cloud:
Optional: Select an SSH key to use to access your cluster machines.
For production OKD clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your |
Select gcp as the platform to target.
If you have not configured the service account key for your GCP account on your computer, you must obtain it from GCP and paste the contents of the file or enter the absolute path to the file.
Select the project ID to provision the cluster in. The default value is specified by the service account that you configured.
Select the region to deploy the cluster to.
Select the base domain to deploy the cluster to. The base domain corresponds to the public DNS zone that you created for your cluster.
Enter a descriptive name for your cluster.
Edit the install-config.yaml
file to give the additional information that is required for an installation in a restricted network.
Update the pullSecret
value to contain the authentication information for
your registry:
pullSecret: '{"auths":{"<mirror_host_name>:5000": {"auth": "<credentials>","email": "you@example.com"}}}'
For <mirror_host_name>
, specify the registry domain name
that you specified in the certificate for your mirror registry, and for
<credentials>
, specify the base64-encoded user name and password for
your mirror registry.
Add the additionalTrustBundle
parameter and value.
additionalTrustBundle: |
-----BEGIN CERTIFICATE-----
ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
-----END CERTIFICATE-----
The value must be the contents of the certificate file that you used for your mirror registry. The certificate file can be an existing, trusted certificate authority, or the self-signed certificate that you generated for the mirror registry.
Define the network and subnets for the VPC to install the cluster in under the parent platform.gcp
field:
network: <existing_vpc>
controlPlaneSubnet: <control_plane_subnet>
computeSubnet: <compute_subnet>
For platform.gcp.network
, specify the name for the existing Google VPC. For platform.gcp.controlPlaneSubnet
and platform.gcp.computeSubnet
, specify the existing subnets to deploy the control plane machines and compute machines, respectively.
Add the image content resources, which resemble the following YAML excerpt:
imageContentSources:
- mirrors:
- <mirror_host_name>:5000/<repo_name>/release
source: quay.io/openshift-release-dev/ocp-release
- mirrors:
- <mirror_host_name>:5000/<repo_name>/release
source: registry.redhat.io/ocp/release
For these values, use the imageContentSources
that you recorded during mirror registry creation.
Optional: Set the publishing strategy to Internal
:
publish: Internal
By setting this option, you create an internal Ingress Controller and a private load balancer.
Make any other modifications to the install-config.yaml
file that you require.
For more information about the parameters, see "Installation configuration parameters".
Back up the install-config.yaml
file so that you can use
it to install multiple clusters.
The |
Each cluster machine must meet the following minimum requirements:
Machine | Operating System | vCPU [1] | Virtual RAM | Storage | Input/Output Per Second (IOPS)[2] |
---|---|---|---|---|---|
Bootstrap |
FCOS |
4 |
16 GB |
100 GB |
300 |
Control plane |
FCOS |
4 |
16 GB |
100 GB |
300 |
Compute |
FCOS |
2 |
8 GB |
100 GB |
300 |
One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or Hyper-Threading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.
OKD and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.
As with all user-provisioned installations, if you choose to use Fedora compute machines in your cluster, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks. Use of Fedora 7 compute machines is deprecated and has been removed in OKD 4.10 and later.
As of OKD version 4.13, RHCOS is based on RHEL version 9.2, which updates the micro-architecture requirements. The following list contains the minimum instruction set architectures (ISA) that each architecture requires:
For more information, see RHEL Architectures. |
If an instance type for your platform meets the minimum requirements for cluster machines, it is supported to use in OKD.
The following Google Cloud Platform instance types have been tested with OKD.
A2
A3
C2
C2D
C3
C3D
E2
M1
N1
N2
N2D
N4
Tau T2D
The following Google Cloud Platform (GCP) 64-bit ARM instance types have been tested with OKD.
Tau T2A
Using a custom machine type to install a OKD cluster is supported.
Consider the following when using a custom machine type:
Similar to predefined instance types, custom machine types must meet the minimum resource requirements for control plane and compute machines. For more information, see "Minimum resource requirements for cluster installation".
The name of the custom machine type must adhere to the following syntax:
custom-<number_of_cpus>-<amount_of_memory_in_mb>
For example, custom-6-20480
.
As part of the installation process, you specify the custom machine type in the install-config.yaml
file.
install-config.yaml
file with a custom machine typecompute:
- architecture: amd64
hyperthreading: Enabled
name: worker
platform:
gcp:
type: custom-6-20480
replicas: 2
controlPlane:
architecture: amd64
hyperthreading: Enabled
name: master
platform:
gcp:
type: custom-6-20480
replicas: 3
You can use Shielded VMs when installing your cluster. Shielded VMs have extra security features including secure boot, firmware and integrity monitoring, and rootkit detection. For more information, see Google’s documentation on Shielded VMs.
Shielded VMs are currently not supported on clusters with 64-bit ARM infrastructures. |
You have created an install-config.yaml
file.
Use a text editor to edit the install-config.yaml
file prior to deploying your cluster and add one of the following stanzas:
To use shielded VMs for only control plane machines:
controlPlane:
platform:
gcp:
secureBoot: Enabled
To use shielded VMs for only compute machines:
compute:
- platform:
gcp:
secureBoot: Enabled
To use shielded VMs for all machines:
platform:
gcp:
defaultMachinePlatform:
secureBoot: Enabled
You can use Confidential VMs when installing your cluster. Confidential VMs encrypt data while it is being processed. For more information, see Google’s documentation on Confidential Computing. You can enable Confidential VMs and Shielded VMs at the same time, although they are not dependent on each other.
Confidential VMs are currently not supported on 64-bit ARM architectures. |
You have created an install-config.yaml
file.
Use a text editor to edit the install-config.yaml
file prior to deploying your cluster and add one of the following stanzas:
To use confidential VMs for only control plane machines:
controlPlane:
platform:
gcp:
confidentialCompute: Enabled (1)
type: n2d-standard-8 (2)
onHostMaintenance: Terminate (3)
1 | Enable confidential VMs. |
2 | Specify a machine type that supports Confidential VMs. Confidential VMs require the N2D or C2D series of machine types. For more information on supported machine types, see Supported operating systems and machine types. |
3 | Specify the behavior of the VM during a host maintenance event, such as a hardware or software update. For a machine that uses Confidential VM, this value must be set to Terminate , which stops the VM. Confidential VMs do not support live VM migration. |
To use confidential VMs for only compute machines:
compute:
- platform:
gcp:
confidentialCompute: Enabled
type: n2d-standard-8
onHostMaintenance: Terminate
To use confidential VMs for all machines:
platform:
gcp:
defaultMachinePlatform:
confidentialCompute: Enabled
type: n2d-standard-8
onHostMaintenance: Terminate
You can customize the install-config.yaml
file to specify more details about your OKD cluster’s platform or modify the values of the required parameters.
This sample YAML file is provided for reference only. You must obtain your |
apiVersion: v1
baseDomain: example.com (1)
credentialsMode: Mint (2)
controlPlane: (3) (4)
hyperthreading: Enabled (5)
name: master
platform:
gcp:
type: n2-standard-4
zones:
- us-central1-a
- us-central1-c
osDisk:
diskType: pd-ssd
diskSizeGB: 1024
encryptionKey: (6)
kmsKey:
name: worker-key
keyRing: test-machine-keys
location: global
projectID: project-id
tags: (7)
- control-plane-tag1
- control-plane-tag2
osImage: (8)
project: example-project-name
name: example-image-name
replicas: 3
compute: (3) (4)
- hyperthreading: Enabled (5)
name: worker
platform:
gcp:
type: n2-standard-4
zones:
- us-central1-a
- us-central1-c
osDisk:
diskType: pd-standard
diskSizeGB: 128
encryptionKey: (6)
kmsKey:
name: worker-key
keyRing: test-machine-keys
location: global
projectID: project-id
tags: (7)
- compute-tag1
- compute-tag2
osImage: (8)
project: example-project-name
name: example-image-name
replicas: 3
metadata:
name: test-cluster (1)
networking:
clusterNetwork:
- cidr: 10.128.0.0/14
hostPrefix: 23
machineNetwork:
- cidr: 10.0.0.0/16
networkType: OVNKubernetes (9)
serviceNetwork:
- 172.30.0.0/16
platform:
gcp:
projectID: openshift-production (1)
region: us-central1 (1)
defaultMachinePlatform:
tags: (7)
- global-tag1
- global-tag2
osImage: (8)
project: example-project-name
name: example-image-name
network: existing_vpc (10)
controlPlaneSubnet: control_plane_subnet (11)
computeSubnet: compute_subnet (12)
pullSecret: '{"auths":{"<local_registry>": {"auth": "<credentials>","email": "you@example.com"}}}' (13)
sshKey: ssh-ed25519 AAAA... (14)
additionalTrustBundle: | (15)
-----BEGIN CERTIFICATE-----
<MY_TRUSTED_CA_CERT>
-----END CERTIFICATE-----
imageContentSources: (16)
- mirrors:
- <local_registry>/<local_repository_name>/release
source: quay.io/openshift-release-dev/ocp-release
- mirrors:
- <local_registry>/<local_repository_name>/release
source: quay.io/openshift-release-dev/ocp-v4.0-art-dev
1 | Required. The installation program prompts you for this value. | ||
2 | Optional: Add this parameter to force the Cloud Credential Operator (CCO) to use the specified mode. By default, the CCO uses the root credentials in the kube-system namespace to dynamically try to determine the capabilities of the credentials. For details about CCO modes, see the "About the Cloud Credential Operator" section in the Authentication and authorization guide. |
||
3 | If you do not provide these parameters and values, the installation program provides the default value. | ||
4 | The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, - , and the first line of the controlPlane section must not. Only one control plane pool is used. |
||
5 | Whether to enable or disable simultaneous multithreading, or hyperthreading . By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled . If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
|
||
6 | Optional: The custom encryption key section to encrypt both virtual machines and persistent volumes. Your default compute service account must have the permissions granted to use your KMS key and have the correct IAM role assigned. The default service account name follows the service-<project_number>@compute-system.iam.gserviceaccount.com pattern. For more information about granting the correct permissions for your service account, see "Machine management" → "Creating compute machine sets" → "Creating a compute machine set on GCP". |
||
7 | Optional: A set of network tags to apply to the control plane or compute machine sets. The platform.gcp.defaultMachinePlatform.tags parameter will apply to both control plane and compute machines. If the compute.platform.gcp.tags or controlPlane.platform.gcp.tags parameters are set, they override the platform.gcp.defaultMachinePlatform.tags parameter. |
||
8 | Optional: A custom Fedora CoreOS (FCOS) that should be used to boot control plane and compute machines. The project and name parameters under platform.gcp.defaultMachinePlatform.osImage apply to both control plane and compute machines. If the project and name parameters under controlPlane.platform.gcp.osImage or compute.platform.gcp.osImage are set, they override the platform.gcp.defaultMachinePlatform.osImage parameters. |
||
9 | The cluster network plugin to install. The default value OVNKubernetes is the only supported value. |
||
10 | Specify the name of an existing VPC. | ||
11 | Specify the name of the existing subnet to deploy the control plane machines to. The subnet must belong to the VPC that you specified. | ||
12 | Specify the name of the existing subnet to deploy the compute machines to. The subnet must belong to the VPC that you specified. | ||
13 | For <local_registry> , specify the registry domain name, and optionally the port, that your mirror registry uses to serve content. For example, registry.example.com or registry.example.com:5000 . For <credentials> , specify the base64-encoded user name and password for your mirror registry. |
||
14 | You can optionally provide the sshKey value that you use to access the machines in your cluster.
|
||
15 | Provide the contents of the certificate file that you used for your mirror registry. | ||
16 | Provide the imageContentSources section from the output of the command to mirror the repository. |
You can create an Ingress Controller that has global access to a Google Cloud Platform (GCP) cluster. Global access is only available to Ingress Controllers using internal load balancers.
You created the install-config.yaml
and complete any modifications to it.
Create an Ingress Controller with global access on a new GCP cluster.
Change to the directory that contains the installation program and create a manifest file:
$ ./openshift-install create manifests --dir <installation_directory> (1)
1 | For <installation_directory> , specify the name of the directory that
contains the install-config.yaml file for your cluster. |
Create a file that is named cluster-ingress-default-ingresscontroller.yaml
in the <installation_directory>/manifests/
directory:
$ touch <installation_directory>/manifests/cluster-ingress-default-ingresscontroller.yaml (1)
1 | For <installation_directory> , specify the directory name that contains the
manifests/ directory for your cluster. |
After creating the file, several network configuration files are in the
manifests/
directory, as shown:
$ ls <installation_directory>/manifests/cluster-ingress-default-ingresscontroller.yaml
cluster-ingress-default-ingresscontroller.yaml
Open the cluster-ingress-default-ingresscontroller.yaml
file in an editor and enter a custom resource (CR) that describes the Operator configuration you want:
clientAccess
configuration to Global
apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
endpointPublishingStrategy:
loadBalancer:
providerParameters:
gcp:
clientAccess: Global (1)
type: GCP
scope: Internal (2)
type: LoadBalancerService
1 | Set gcp.clientAccess to Global . |
2 | Global access is only available to Ingress Controllers using internal load balancers. |
Production environments can deny direct access to the internet and instead have
an HTTP or HTTPS proxy available. You can configure a new OKD
cluster to use a proxy by configuring the proxy settings in the
install-config.yaml
file.
You have an existing install-config.yaml
file.
You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy
object’s spec.noProxy
field to bypass the proxy if necessary.
The For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and OpenStack, the |
Edit your install-config.yaml
file and add the proxy settings. For example:
apiVersion: v1
baseDomain: my.domain.com
proxy:
httpProxy: http://<username>:<pswd>@<ip>:<port> (1)
httpsProxy: https://<username>:<pswd>@<ip>:<port> (2)
noProxy: example.com (3)
additionalTrustBundle: | (4)
-----BEGIN CERTIFICATE-----
<MY_TRUSTED_CA_CERT>
-----END CERTIFICATE-----
additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> (5)
1 | A proxy URL to use for creating HTTP connections outside the cluster. The
URL scheme must be http . |
2 | A proxy URL to use for creating HTTPS connections outside the cluster. |
3 | A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com , but not y.com . Use * to bypass the proxy for all destinations. |
4 | If provided, the installation program generates a config map that is named user-ca-bundle in
the openshift-config namespace to hold the additional CA
certificates. If you provide additionalTrustBundle and at least one proxy setting, the Proxy object is configured to reference the user-ca-bundle config map in the trustedCA field. The Cluster Network
Operator then creates a trusted-ca-bundle config map that merges the contents specified for the trustedCA parameter
with the FCOS trust bundle. The additionalTrustBundle field is required unless
the proxy’s identity certificate is signed by an authority from the FCOS trust
bundle. |
5 | Optional: The policy to determine the configuration of the Proxy object to reference the user-ca-bundle config map in the trustedCA field. The allowed values are Proxyonly and Always . Use Proxyonly to reference the user-ca-bundle config map only when http/https proxy is configured. Use Always to always reference the user-ca-bundle config map. The default value is Proxyonly . |
The installation program does not support the proxy |
If the installer times out, restart and then complete the deployment by using the
|
Save the file and reference it when installing OKD.
The installation program creates a cluster-wide proxy that is named cluster
that uses the proxy
settings in the provided install-config.yaml
file. If no proxy settings are
provided, a cluster
Proxy
object is still created, but it will have a nil
spec
.
Only the |
You can install the OpenShift CLI (oc
) to interact with
OKD
from a command-line interface. You can install oc
on Linux, Windows, or macOS.
If you installed an earlier version of |
You can install the OpenShift CLI (oc
) binary on Linux by using the following procedure.
Navigate to https://mirror.openshift.com/pub/openshift-v4/clients/oc/latest/ and choose the folder for your operating system and architecture.
Download oc.tar.gz
.
Unpack the archive:
$ tar xvf <file>
Place the oc
binary in a directory that is on your PATH
.
To check your PATH
, execute the following command:
$ echo $PATH
After you install the OpenShift CLI, it is available using the oc
command:
$ oc <command>
You can install the OpenShift CLI (oc
) binary on Windows by using the following procedure.
Navigate to https://mirror.openshift.com/pub/openshift-v4/clients/oc/latest/ and choose the folder for your operating system and architecture.
Download oc.zip
.
Unzip the archive with a ZIP program.
Move the oc
binary to a directory that is on your PATH
.
To check your PATH
, open the command prompt and execute the following command:
C:\> path
After you install the OpenShift CLI, it is available using the oc
command:
C:\> oc <command>
You can install the OpenShift CLI (oc
) binary on macOS by using the following procedure.
Navigate to https://mirror.openshift.com/pub/openshift-v4/clients/oc/latest/ and choose the folder for your operating system and architecture.
Download oc.tar.gz
.
Unpack and unzip the archive.
Move the oc
binary to a directory on your PATH.
To check your PATH
, open a terminal and execute the following command:
$ echo $PATH
Verify your installation by using an oc
command:
$ oc <command>
By default, administrator secrets are stored in the kube-system
project. If you configured the credentialsMode
parameter in the install-config.yaml
file to Manual
, you must use one of the following alternatives:
To manage long-term cloud credentials manually, follow the procedure in Manually creating long-term credentials.
To implement short-term credentials that are managed outside the cluster for individual components, follow the procedures in Configuring a GCP cluster to use short-term credentials.
The Cloud Credential Operator (CCO) can be put into manual mode prior to installation in environments where the cloud identity and access management (IAM) APIs are not reachable, or the administrator prefers not to store an administrator-level credential secret in the cluster kube-system
namespace.
Add the following granular permissions to the GCP account that the installation program uses:
compute.machineTypes.list
compute.regions.list
compute.zones.list
dns.changes.create
dns.changes.get
dns.managedZones.create
dns.managedZones.delete
dns.managedZones.get
dns.managedZones.list
dns.networks.bindPrivateDNSZone
dns.resourceRecordSets.create
dns.resourceRecordSets.delete
dns.resourceRecordSets.list
If you did not set the credentialsMode
parameter in the install-config.yaml
configuration file to Manual
, modify the value as shown:
apiVersion: v1
baseDomain: example.com
credentialsMode: Manual
# ...
If you have not previously created installation manifest files, do so by running the following command:
$ openshift-install create manifests --dir <installation_directory>
where <installation_directory>
is the directory in which the installation program creates files.
Set a $RELEASE_IMAGE
variable with the release image from your installation file by running the following command:
$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
Extract the list of CredentialsRequest
custom resources (CRs) from the OKD release image by running the following command:
$ oc adm release extract \
--from=$RELEASE_IMAGE \
--credentials-requests \
--included \(1)
--install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \(2)
--to=<path_to_directory_for_credentials_requests> (3)
1 | The --included parameter includes only the manifests that your specific cluster configuration requires. |
2 | Specify the location of the install-config.yaml file. |
3 | Specify the path to the directory where you want to store the CredentialsRequest objects. If the specified directory does not exist, this command creates it. |
This command creates a YAML file for each CredentialsRequest
object.
CredentialsRequest
objectapiVersion: cloudcredential.openshift.io/v1
kind: CredentialsRequest
metadata:
name: <component_credentials_request>
namespace: openshift-cloud-credential-operator
...
spec:
providerSpec:
apiVersion: cloudcredential.openshift.io/v1
kind: GCPProviderSpec
predefinedRoles:
- roles/storage.admin
- roles/iam.serviceAccountUser
skipServiceCheck: true
...
Create YAML files for secrets in the openshift-install
manifests directory that you generated previously. The secrets must be stored using the namespace and secret name defined in the spec.secretRef
for each CredentialsRequest
object.
CredentialsRequest
object with secretsapiVersion: cloudcredential.openshift.io/v1
kind: CredentialsRequest
metadata:
name: <component_credentials_request>
namespace: openshift-cloud-credential-operator
...
spec:
providerSpec:
apiVersion: cloudcredential.openshift.io/v1
...
secretRef:
name: <component_secret>
namespace: <component_namespace>
...
Secret
objectapiVersion: v1
kind: Secret
metadata:
name: <component_secret>
namespace: <component_namespace>
data:
service_account.json: <base64_encoded_gcp_service_account_file>
Before upgrading a cluster that uses manually maintained credentials, you must ensure that the CCO is in an upgradeable state. |
To install a cluster that is configured to use GCP Workload Identity, you must configure the CCO utility and create the required GCP resources for your cluster.
To create and manage cloud credentials from outside of the cluster when the Cloud Credential Operator (CCO) is operating in manual mode, extract and prepare the CCO utility (ccoctl
) binary.
The |
You have access to an OKD account with cluster administrator access.
You have installed the OpenShift CLI (oc
).
You have added one of the following authentication options to the GCP account that the installation program uses:
The IAM Workload Identity Pool Admin role.
The following granular permissions:
compute.projects.get
iam.googleapis.com/workloadIdentityPoolProviders.create
iam.googleapis.com/workloadIdentityPoolProviders.get
iam.googleapis.com/workloadIdentityPools.create
iam.googleapis.com/workloadIdentityPools.delete
iam.googleapis.com/workloadIdentityPools.get
iam.googleapis.com/workloadIdentityPools.undelete
iam.roles.create
iam.roles.delete
iam.roles.list
iam.roles.undelete
iam.roles.update
iam.serviceAccounts.create
iam.serviceAccounts.delete
iam.serviceAccounts.getIamPolicy
iam.serviceAccounts.list
iam.serviceAccounts.setIamPolicy
iam.workloadIdentityPoolProviders.get
iam.workloadIdentityPools.delete
resourcemanager.projects.get
resourcemanager.projects.getIamPolicy
resourcemanager.projects.setIamPolicy
storage.buckets.create
storage.buckets.delete
storage.buckets.get
storage.buckets.getIamPolicy
storage.buckets.setIamPolicy
storage.objects.create
storage.objects.delete
storage.objects.list
Set a variable for the OKD release image by running the following command:
$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
Obtain the CCO container image from the OKD release image by running the following command:
$ CCO_IMAGE=$(oc adm release info --image-for='cloud-credential-operator' $RELEASE_IMAGE -a ~/.pull-secret)
Ensure that the architecture of the |
Extract the ccoctl
binary from the CCO container image within the OKD release image by running the following command:
$ oc image extract $CCO_IMAGE \
--file="/usr/bin/ccoctl.<rhel_version>" \(1)
-a ~/.pull-secret
1 | For <rhel_version> , specify the value that corresponds to the version of Fedora that the host uses.
If no value is specified, ccoctl.rhel8 is used by default.
The following values are valid:
|
Change the permissions to make ccoctl
executable by running the following command:
$ chmod 775 ccoctl.<rhel_version>
To verify that ccoctl
is ready to use, display the help file. Use a relative file name when you run the command, for example:
$ ./ccoctl.rhel9
OpenShift credentials provisioning tool
Usage:
ccoctl [command]
Available Commands:
aws Manage credentials objects for AWS cloud
azure Manage credentials objects for Azure
gcp Manage credentials objects for Google cloud
help Help about any command
ibmcloud Manage credentials objects for IBM Cloud
nutanix Manage credentials objects for Nutanix
Flags:
-h, --help help for ccoctl
Use "ccoctl [command] --help" for more information about a command.
You can use the ccoctl gcp create-all
command to automate the creation of GCP resources.
By default, |
You must have:
Extracted and prepared the ccoctl
binary.
Set a $RELEASE_IMAGE
variable with the release image from your installation file by running the following command:
$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
Extract the list of CredentialsRequest
objects from the OKD release image by running the following command:
$ oc adm release extract \
--from=$RELEASE_IMAGE \
--credentials-requests \
--included \(1)
--install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \(2)
--to=<path_to_directory_for_credentials_requests> (3)
1 | The --included parameter includes only the manifests that your specific cluster configuration requires. |
2 | Specify the location of the install-config.yaml file. |
3 | Specify the path to the directory where you want to store the CredentialsRequest objects. If the specified directory does not exist, this command creates it. |
This command might take a few moments to run. |
Use the ccoctl
tool to process all CredentialsRequest
objects by running the following command:
$ ccoctl gcp create-all \
--name=<name> \(1)
--region=<gcp_region> \(2)
--project=<gcp_project_id> \(3)
--credentials-requests-dir=<path_to_credentials_requests_directory> (4)
1 | Specify the user-defined name for all created GCP resources used for tracking. |
2 | Specify the GCP region in which cloud resources will be created. |
3 | Specify the GCP project ID in which cloud resources will be created. |
4 | Specify the directory containing the files of CredentialsRequest manifests to create GCP service accounts. |
If your cluster uses Technology Preview features that are enabled by the |
To verify that the OKD secrets are created, list the files in the <path_to_ccoctl_output_dir>/manifests
directory:
$ ls <path_to_ccoctl_output_dir>/manifests
cluster-authentication-02-config.yaml
openshift-cloud-controller-manager-gcp-ccm-cloud-credentials-credentials.yaml
openshift-cloud-credential-operator-cloud-credential-operator-gcp-ro-creds-credentials.yaml
openshift-cloud-network-config-controller-cloud-credentials-credentials.yaml
openshift-cluster-api-capg-manager-bootstrap-credentials-credentials.yaml
openshift-cluster-csi-drivers-gcp-pd-cloud-credentials-credentials.yaml
openshift-image-registry-installer-cloud-credentials-credentials.yaml
openshift-ingress-operator-cloud-credentials-credentials.yaml
openshift-machine-api-gcp-cloud-credentials-credentials.yaml
You can verify that the IAM service accounts are created by querying GCP. For more information, refer to GCP documentation on listing IAM service accounts.
To implement short-term security credentials managed outside the cluster for individual components, you must move the manifest files that the Cloud Credential Operator utility (ccoctl
) created to the correct directories for the installation program.
You have configured an account with the cloud platform that hosts your cluster.
You have configured the Cloud Credential Operator utility (ccoctl
).
You have created the cloud provider resources that are required for your cluster with the ccoctl
utility.
Add the following granular permissions to the GCP account that the installation program uses:
compute.machineTypes.list
compute.regions.list
compute.zones.list
dns.changes.create
dns.changes.get
dns.managedZones.create
dns.managedZones.delete
dns.managedZones.get
dns.managedZones.list
dns.networks.bindPrivateDNSZone
dns.resourceRecordSets.create
dns.resourceRecordSets.delete
dns.resourceRecordSets.list
If you did not set the credentialsMode
parameter in the install-config.yaml
configuration file to Manual
, modify the value as shown:
apiVersion: v1
baseDomain: example.com
credentialsMode: Manual
# ...
If you have not previously created installation manifest files, do so by running the following command:
$ openshift-install create manifests --dir <installation_directory>
where <installation_directory>
is the directory in which the installation program creates files.
Copy the manifests that the ccoctl
utility generated to the manifests
directory that the installation program created by running the following command:
$ cp /<path_to_ccoctl_output_dir>/manifests/* ./manifests/
Copy the tls
directory that contains the private key to the installation directory:
$ cp -a /<path_to_ccoctl_output_dir>/tls .
You can install OKD on a compatible cloud platform.
You can run the |
You have configured an account with the cloud platform that hosts your cluster.
You have the OKD installation program and the pull secret for your cluster.
You have verified that the cloud provider account on your host has the correct permissions to deploy the cluster. An account with incorrect permissions causes the installation process to fail with an error message that displays the missing permissions.
Remove any existing GCP credentials that do not use the service account key for the GCP account that you configured for your cluster and that are stored in the following locations:
The GOOGLE_CREDENTIALS
, GOOGLE_CLOUD_KEYFILE_JSON
, or GCLOUD_KEYFILE_JSON
environment variables
The ~/.gcp/osServiceAccount.json
file
The gcloud cli
default credentials
Change to the directory that contains the installation program and initialize the cluster deployment:
$ ./openshift-install create cluster --dir <installation_directory> \ (1)
--log-level=info (2)
1 | For <installation_directory> , specify the
location of your customized ./install-config.yaml file. |
2 | To view different installation details, specify warn , debug , or
error instead of info . |
Optional: You can reduce the number of permissions for the service account that you used to install the cluster.
If you assigned the Owner
role to your service account, you can remove that role and replace it with the Viewer
role.
If you included the Service Account Key Admin
role,
you can remove it.
When the cluster deployment completes successfully:
The terminal displays directions for accessing your cluster, including a link to the web console and credentials for the kubeadmin
user.
Credential information also outputs to <installation_directory>/.openshift_install.log
.
Do not delete the installation program or the files that the installation program creates. Both are required to delete the cluster. |
...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s
|
You can log in to your cluster as a default system user by exporting the cluster kubeconfig
file.
The kubeconfig
file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server.
The file is specific to a cluster and is created during OKD installation.
You deployed an OKD cluster.
You installed the oc
CLI.
Export the kubeadmin
credentials:
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig (1)
1 | For <installation_directory> , specify the path to the directory that you stored
the installation files in. |
Verify you can run oc
commands successfully using the exported configuration:
$ oc whoami
system:admin
Operator catalogs that source content provided by Red Hat and community projects are configured for OperatorHub by default during an OKD installation. In a restricted network environment, you must disable the default catalogs as a cluster administrator.
Disable the sources for the default catalogs by adding disableAllDefaultSources: true
to the OperatorHub
object:
$ oc patch OperatorHub cluster --type json \
-p '[{"op": "add", "path": "/spec/disableAllDefaultSources", "value": true}]'
Alternatively, you can use the web console to manage catalog sources. From the Administration → Cluster Settings → Configuration → OperatorHub page, click the Sources tab, where you can create, update, delete, disable, and enable individual sources. |
See About remote health monitoring for more information about the Telemetry service
Configure image streams for the Cluster Samples Operator and the must-gather
tool.
Learn how to use Operator Lifecycle Manager (OLM) on restricted networks.
If the mirror registry that you used to install your cluster has a trusted CA, add it to the cluster by configuring additional trust stores.
If necessary, you can opt out of remote health reporting.
If necessary, see Registering your disconnected cluster