×

Events

OKD events are records of important life-cycle information and are useful for monitoring and troubleshooting virtual machine, namespace, and resource issues.

  • VM events: Navigate to the Events tab of the VirtualMachine details page in the web console.

    Namespace events

    You can view namespace events by running the following command:

    $ oc get events -n <namespace>

    See the list of events for details about specific events.

    Resource events

    You can view resource events by running the following command:

    $ oc describe <resource> <resource_name>

Pod logs

You can view logs for OKD Virtualization pods by using the web console or the CLI. You can also view aggregated logs by using the LokiStack in the web console.

Configuring OKD Virtualization pod log verbosity

You can configure the verbosity level of OKD Virtualization pod logs by editing the HyperConverged custom resource (CR).

Procedure
  1. To set log verbosity for specific components, open the HyperConverged CR in your default text editor by running the following command:

    $ oc edit hyperconverged kubevirt-hyperconverged -n kubevirt-hyperconverged
  2. Set the log level for one or more components by editing the spec.logVerbosityConfig stanza. For example:

    apiVersion: hco.kubevirt.io/v1beta1
    kind: HyperConverged
    metadata:
      name: kubevirt-hyperconverged
    spec:
      logVerbosityConfig:
        kubevirt:
          virtAPI: 5 (1)
          virtController: 4
          virtHandler: 3
          virtLauncher: 2
          virtOperator: 6
    1 The log verbosity value must be an integer in the range 1–9, where a higher number indicates a more detailed log. In this example, the virtAPI component logs are exposed if their priority level is 5 or higher.
  3. Apply your changes by saving and exiting the editor.

Viewing virt-launcher pod logs with the web console

You can view the virt-launcher pod logs for a virtual machine by using the OKD web console.

Procedure
  1. Navigate to VirtualizationVirtualMachines.

  2. Select a virtual machine to open the VirtualMachine details page.

  3. On the General tile, click the pod name to open the Pod details page.

  4. Click the Logs tab to view the logs.

Viewing OKD Virtualization pod logs with the CLI

You can view logs for the OKD Virtualization pods by using the oc CLI tool.

Procedure
  1. View a list of pods in the OKD Virtualization namespace by running the following command:

    $ oc get pods -n kubevirt-hyperconverged
    Example output
    NAME                               READY   STATUS    RESTARTS   AGE
    disks-images-provider-7gqbc        1/1     Running   0          32m
    disks-images-provider-vg4kx        1/1     Running   0          32m
    virt-api-57fcc4497b-7qfmc          1/1     Running   0          31m
    virt-api-57fcc4497b-tx9nc          1/1     Running   0          31m
    virt-controller-76c784655f-7fp6m   1/1     Running   0          30m
    virt-controller-76c784655f-f4pbd   1/1     Running   0          30m
    virt-handler-2m86x                 1/1     Running   0          30m
    virt-handler-9qs6z                 1/1     Running   0          30m
    virt-operator-7ccfdbf65f-q5snk     1/1     Running   0          32m
    virt-operator-7ccfdbf65f-vllz8     1/1     Running   0          32m
  2. View the pod log by running the following command:

    $ oc logs -n kubevirt-hyperconverged <pod_name>

    If a pod fails to start, you can use the --previous option to view logs from the last attempt.

    To monitor log output in real time, use the -f option.

    Example output
    {"component":"virt-handler","level":"info","msg":"set verbosity to 2","pos":"virt-handler.go:453","timestamp":"2022-04-17T08:58:37.373695Z"}
    {"component":"virt-handler","level":"info","msg":"set verbosity to 2","pos":"virt-handler.go:453","timestamp":"2022-04-17T08:58:37.373726Z"}
    {"component":"virt-handler","level":"info","msg":"setting rate limiter to 5 QPS and 10 Burst","pos":"virt-handler.go:462","timestamp":"2022-04-17T08:58:37.373782Z"}
    {"component":"virt-handler","level":"info","msg":"CPU features of a minimum baseline CPU model: map[apic:true clflush:true cmov:true cx16:true cx8:true de:true fpu:true fxsr:true lahf_lm:true lm:true mca:true mce:true mmx:true msr:true mtrr:true nx:true pae:true pat:true pge:true pni:true pse:true pse36:true sep:true sse:true sse2:true sse4.1:true ssse3:true syscall:true tsc:true]","pos":"cpu_plugin.go:96","timestamp":"2022-04-17T08:58:37.390221Z"}
    {"component":"virt-handler","level":"warning","msg":"host model mode is expected to contain only one model","pos":"cpu_plugin.go:103","timestamp":"2022-04-17T08:58:37.390263Z"}
    {"component":"virt-handler","level":"info","msg":"node-labeller is running","pos":"node_labeller.go:94","timestamp":"2022-04-17T08:58:37.391011Z"}

Guest system logs

Viewing the boot logs of VM guests can help diagnose issues. You can configure access to guests' logs and view them by using either the OKD web console or the oc CLI.

This feature is disabled by default. If a VM does not explicitly have this setting enabled or disabled, it inherits the cluster-wide default setting.

If sensitive information such as credentials or other personally identifiable information (PII) is written to the serial console, it is logged with all other visible text. Red Hat recommends using SSH to send sensitive data instead of the serial console.

Enabling default access to VM guest system logs with the web console

You can enable default access to VM guest system logs by using the web console.

Procedure
  1. From the side menu, click VirtualizationOverview.

  2. Click the Settings tab.

  3. Click ClusterGuest management.

  4. Set Enable guest system log access to on.

Enabling default access to VM guest system logs with the CLI

You can enable default access to VM guest system logs by editing the HyperConverged custom resource (CR).

Procedure
  1. Open the HyperConverged CR in your default editor by running the following command:

    $ oc edit hyperconverged kubevirt-hyperconverged -n kubevirt-hyperconverged
  2. Update the disableSerialConsoleLog value. For example:

    kind: HyperConverged
    metadata:
      name: kubevirt-hyperconverged
    spec:
      virtualMachineOptions:
        disableSerialConsoleLog: true (1)
    #...
    1 Set the value of disableSerialConsoleLog to false if you want serial console access to be enabled on VMs by default.

Setting guest system log access for a single VM with the web console

You can configure access to VM guest system logs for a single VM by using the web console. This setting takes precedence over the cluster-wide default configuration.

Procedure
  1. Click VirtualizationVirtualMachines from the side menu.

  2. Select a virtual machine to open the VirtualMachine details page.

  3. Click the Configuration tab.

  4. Set Guest system log access to on or off.

Setting guest system log access for a single VM with the CLI

You can configure access to VM guest system logs for a single VM by editing the VirtualMachine CR. This setting takes precedence over the cluster-wide default configuration.

Procedure
  1. Edit the virtual machine manifest by running the following command:

    $ oc edit vm <vm_name>
  2. Update the value of the logSerialConsole field. For example:

    apiVersion: kubevirt.io/v1
    kind: VirtualMachine
    metadata:
      name: example-vm
    spec:
      template:
        spec:
          domain:
            devices:
              logSerialConsole: true (1)
    #...
    1 To enable access to the guest’s serial console log, set the logSerialConsole value to true.
  3. Apply the new configuration to the VM by running the following command:

    $ oc apply vm <vm_name>
  4. Optional: If you edited a running VM, restart the VM to apply the new configuration. For example:

    $ virtctl restart <vm_name> -n <namespace>

Viewing guest system logs with the web console

You can view the serial console logs of a virtual machine (VM) guest by using the web console.

Prerequisites
  • Guest system log access is enabled.

Procedure
  1. Click VirtualizationVirtualMachines from the side menu.

  2. Select a virtual machine to open the VirtualMachine details page.

  3. Click the Diagnostics tab.

  4. Click Guest system logs to load the serial console.

Viewing guest system logs with the CLI

You can view the serial console logs of a VM guest by running the oc logs command.

Prerequisites
  • Guest system log access is enabled.

Procedure
  • View the logs by running the following command, substituting your own values for <namespace> and <vm_name>:

    $ oc logs -n <namespace> -l kubevirt.io/domain=<vm_name> --tail=-1 -c guest-console-log

Log aggregation

You can facilitate troubleshooting by aggregating and filtering logs.

Viewing aggregated OKD Virtualization logs with the LokiStack

You can view aggregated logs for OKD Virtualization pods and containers by using the LokiStack in the web console.

Prerequisites
  • You deployed the LokiStack.

Procedure
  1. Navigate to ObserveLogs in the web console.

  2. Select application, for virt-launcher pod logs, or infrastructure, for OKD Virtualization control plane pods and containers, from the log type list.

  3. Click Show Query to display the query field.

  4. Enter the LogQL query in the query field and click Run Query to display the filtered logs.

OKD Virtualization LogQL queries

You can view and filter aggregated logs for OKD Virtualization components by running Loki Query Language (LogQL) queries on the ObserveLogs page in the web console.

The default log type is infrastructure. The virt-launcher log type is application.

Optional: You can include or exclude strings or regular expressions by using line filter expressions.

If the query matches a large number of logs, the query might time out.

Table 1. OKD Virtualization LogQL example queries
Component LogQL query

All

{log_type=~".+"}|json
|kubernetes_labels_app_kubernetes_io_part_of="hyperconverged-cluster"

cdi-apiserver

cdi-deployment

cdi-operator

{log_type=~".+"}|json
|kubernetes_labels_app_kubernetes_io_part_of="hyperconverged-cluster"
|kubernetes_labels_app_kubernetes_io_component="storage"

hco-operator

{log_type=~".+"}|json
|kubernetes_labels_app_kubernetes_io_part_of="hyperconverged-cluster"
|kubernetes_labels_app_kubernetes_io_component="deployment"

kubemacpool

{log_type=~".+"}|json
|kubernetes_labels_app_kubernetes_io_part_of="hyperconverged-cluster"
|kubernetes_labels_app_kubernetes_io_component="network"

virt-api

virt-controller

virt-handler

virt-operator

{log_type=~".+"}|json
|kubernetes_labels_app_kubernetes_io_part_of="hyperconverged-cluster"
|kubernetes_labels_app_kubernetes_io_component="compute"

ssp-operator

{log_type=~".+"}|json
|kubernetes_labels_app_kubernetes_io_part_of="hyperconverged-cluster"
|kubernetes_labels_app_kubernetes_io_component="schedule"

Container

{log_type=~".+",kubernetes_container_name=~"<container>|<container>"} (1)
|json|kubernetes_labels_app_kubernetes_io_part_of="hyperconverged-cluster"
1 Specify one or more containers separated by a pipe (|).

virt-launcher

You must select application from the log type list before running this query.

{log_type=~".+", kubernetes_container_name="compute"}|json
|!= "custom-ga-command" (1)
1 |!= "custom-ga-command" excludes libvirt logs that contain the string custom-ga-command. (BZ#2177684)

You can filter log lines to include or exclude strings or regular expressions by using line filter expressions.

Table 2. Line filter expressions
Line filter expression Description

|= "<string>"

Log line contains string

!= "<string>"

Log line does not contain string

|~ "<regex>"

Log line contains regular expression

!~ "<regex>"

Log line does not contain regular expression

Example line filter expression
{log_type=~".+"}|json
|kubernetes_labels_app_kubernetes_io_part_of="hyperconverged-cluster"
|= "error" != "timeout"
Additional resources for LokiStack and LogQL

Common error messages

The following error messages might appear in OKD Virtualization logs:

ErrImagePull or ImagePullBackOff

Indicates an incorrect deployment configuration or problems with the images that are referenced.

Troubleshooting data volumes

You can check the Conditions and Events sections of the DataVolume object to analyze and resolve issues.

About data volume conditions and events

You can diagnose data volume issues by examining the output of the Conditions and Events sections generated by the command:

$ oc describe dv <DataVolume>

The Conditions section displays the following Types:

  • Bound

  • Running

  • Ready

The Events section provides the following additional information:

  • Type of event

  • Reason for logging

  • Source of the event

  • Message containing additional diagnostic information.

The output from oc describe does not always contains Events.

An event is generated when the Status, Reason, or Message changes. Both conditions and events react to changes in the state of the data volume.

For example, if you misspell the URL during an import operation, the import generates a 404 message. That message change generates an event with a reason. The output in the Conditions section is updated as well.

Analyzing data volume conditions and events

By inspecting the Conditions and Events sections generated by the describe command, you determine the state of the data volume in relation to persistent volume claims (PVCs), and whether or not an operation is actively running or completed. You might also receive messages that offer specific details about the status of the data volume, and how it came to be in its current state.

There are many different combinations of conditions. Each must be evaluated in its unique context.

Examples of various combinations follow.

  • Bound - A successfully bound PVC displays in this example.

    Note that the Type is Bound, so the Status is True. If the PVC is not bound, the Status is False.

    When the PVC is bound, an event is generated stating that the PVC is bound. In this case, the Reason is Bound and Status is True. The Message indicates which PVC owns the data volume.

    Message, in the Events section, provides further details including how long the PVC has been bound (Age) and by what resource (From), in this case datavolume-controller:

    Example output
    Status:
      Conditions:
        Last Heart Beat Time:  2020-07-15T03:58:24Z
        Last Transition Time:  2020-07-15T03:58:24Z
        Message:               PVC win10-rootdisk Bound
        Reason:                Bound
        Status:                True
        Type:                  Bound
    ...
      Events:
        Type     Reason     Age    From                   Message
        ----     ------     ----   ----                   -------
        Normal   Bound      24s    datavolume-controller  PVC example-dv Bound
  • Running - In this case, note that Type is Running and Status is False, indicating that an event has occurred that caused an attempted operation to fail, changing the Status from True to False.

    However, note that Reason is Completed and the Message field indicates Import Complete.

    In the Events section, the Reason and Message contain additional troubleshooting information about the failed operation. In this example, the Message displays an inability to connect due to a 404, listed in the Events section’s first Warning.

    From this information, you conclude that an import operation was running, creating contention for other operations that are attempting to access the data volume:

    Example output
    Status:
      Conditions:
        Last Heart Beat Time:  2020-07-15T04:31:39Z
        Last Transition Time:  2020-07-15T04:31:39Z
        Message:               Import Complete
        Reason:                Completed
        Status:                False
        Type:                  Running
    ...
      Events:
        Type     Reason       Age                From                   Message
        ----     ------       ----               ----                   -------
        Warning  Error        12s (x2 over 14s)  datavolume-controller  Unable to connect
        to http data source: expected status code 200, got 404. Status: 404 Not Found
  • Ready – If Type is Ready and Status is True, then the data volume is ready to be used, as in the following example. If the data volume is not ready to be used, the Status is False:

    Example output
    Status:
      Conditions:
        Last Heart Beat Time: 2020-07-15T04:31:39Z
        Last Transition Time:  2020-07-15T04:31:39Z
        Status:                True
        Type:                  Ready